Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== ### ==== Remove these lines entirely: <syntaxhighlight lang="latex">Assume $v\in C$ and that the restricted candidate \eqref{eq:xhat_def_gamma_param} satisfies \begin{equation}\label{eq:xhat_positive_gamma_param} \hat x_C>0\quad\text{(componentwise)}. \end{equation} </syntaxhighlight> ===== Replace everything from: ===== <syntaxhighlight lang="latex">\begin{theorem}[Margin bound parameterized by conductance, internal connectivity, and outside degree] \label{thm:gamma_parameterized_by_cluster} ... \end{proof} </syntaxhighlight> with the following (copy-paste): <syntaxhighlight lang="latex">\begin{theorem}[Margin bound parameterized by conductance, internal connectivity, and outside degree] \label{thm:gamma_parameterized_by_cluster} Assume $v\in C$ and let $\hat x$ be defined by \eqref{eq:xhat_def_gamma_param} (restricted minimizer with $\hat x_{\bar C}=0$). Then: \begin{enumerate} \item[(i)] If $\Delta(C)<\min_{i\in\bar C}\lambda_i=\rho\alpha\sqrt{d_{\mathrm{out}}}$, then $\hat x$ is the \emph{unique} global minimizer of \eqref{eq:ppr_obj_gamma_param}. In particular, $x^\star=\hat x$ and $x^\star_{\bar C}=0$. \item[(ii)] Whenever $x^\star=\hat x$, the \emph{outside} slack (margin on $\bar C$) satisfies the explicit lower bound \begin{equation}\label{eq:gamma_param_bound_gamma_param} \min_{i\in \bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr) \;\ge\; \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C). \end{equation} Equivalently, if $\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}$ for some $\eta\in(0,1)$, then \begin{equation}\label{eq:gamma_eta_bound_gamma_param} \min_{i\in \bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr) \ge \eta\,\rho\alpha\sqrt{d_{\mathrm{out}}}. \end{equation} \end{enumerate} \end{theorem} \begin{proof} We prove (i) and (ii) in order. \medskip\noindent\textbf{Step 1: KKT conditions for \eqref{eq:ppr_obj_gamma_param}.} Since $f$ is differentiable and $g(x)=\sum_i \lambda_i|x_i|$, a point $x$ is optimal if and only if there exists $z\in\partial g(x)$ such that \begin{equation}\label{eq:KKT_gamma_param} \nabla f(x)+z=0. \end{equation} Moreover, $F$ is strongly convex because $f$ is $\alpha$-strongly convex and $g$ is convex, so the minimizer is unique. \medskip\noindent\textbf{Step 2: Build a valid $z\in\partial g(\hat x)$ and verify \eqref{eq:KKT_gamma_param}.} From Lemma~\ref{lem:restricted_KKT_on_C}, there exists $z_C$ such that $Q_{CC}\hat x_C-b_C+z_C=0$ and $z_{C,i}\in[-\lambda_i,\lambda_i]$ for all $i\in C$. Define $z\in\mathbb{R}^n$ by \[ z_i := \begin{cases} (z_C)_i, & i\in C,\\[1mm] -\nabla f(\hat x)_i, & i\in\bar C. \end{cases} \] We claim $z\in\partial g(\hat x)$ provided $|\nabla f(\hat x)_i|\le \lambda_i$ for all $i\in\bar C$. Indeed: \begin{itemize} \item If $i\in C$, then $z_{C,i}\in \lambda_i\,\partial|\hat x_i|$ by Lemma~\ref{lem:restricted_KKT_on_C}, so it is a valid weighted-$\ell_1$ subgradient component on $C$. \item If $i\in\bar C$, then $\hat x_i=0$ and the subgradient condition is $z_i\in[-\lambda_i,\lambda_i]$. This holds if $|z_i|=|\nabla f(\hat x)_i|\le \lambda_i$. \end{itemize} Next we check \eqref{eq:KKT_gamma_param}. On $C$, since $\hat x_{\bar C}=0$, \[ \nabla f(\hat x)_C = (Q\hat x-b)_C = Q_{CC}\hat x_C - b_C, \] hence $\nabla f(\hat x)_C+z_C=0$ by $Q_{CC}\hat x_C-b_C+z_C=0$. On $\bar C$, by construction $\nabla f(\hat x)_{\bar C}+z_{\bar C}=0$. Therefore $\nabla f(\hat x)+z=0$. \medskip\noindent\textbf{Step 3: Enforce the outside inequalities via $\Delta(C)$.} By Lemma~\ref{lem:outside_grad_bound_gamma_param} and Lemma~\ref{lem:xC_norm_gamma_param}, \[ \max_{i\in\bar C}|\nabla f(\hat x)_i| \le \Delta(C). \] Therefore, if $\Delta(C)<\rho\alpha\sqrt{d_{\mathrm{out}}}\le \lambda_i$ for all $i\in\bar C$, then $|\nabla f(\hat x)_i|<\lambda_i$ on $\bar C$, so indeed $z\in\partial g(\hat x)$ and the KKT condition holds. Hence $\hat x$ is a minimizer, and by strong convexity it is the unique minimizer: $\hat x=x^\star$. This proves (i). \medskip\noindent\textbf{Step 4: Lower bound the outside margin on $\bar C$.} Assume $x^\star=\hat x$. Then for every $i\in\bar C$, \[ \lambda_i-|\nabla f(x^\star)_i| =\lambda_i-|\nabla f(\hat x)_i| \ge \lambda_i-\Delta(C) \ge \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C), \] where we used $\lambda_i\ge \rho\alpha\sqrt{d_{\mathrm{out}}}$. Taking the minimum over $i\in\bar C$ yields \eqref{eq:gamma_param_bound_gamma_param}, and the $\eta$-form \eqref{eq:gamma_eta_bound_gamma_param} follows immediately. \end{proof} </syntaxhighlight> β After this change, you no longer need to prove x^C>0\hat x_C>0x^Cβ>0; the theorem is correct with only x^Cβ₯0\hat x_C\ge 0x^Cββ₯0 (which we proved in Lemma lem:abs_improvement_nonneg), and it yields the parameterized slack bound on CΛ\bar CCΛ (which is what your conductance/outside-degree analysis controls).
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)