Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69174844-9774-8012-8b69-32262ca5e35a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== 1. 群生成元的意义 ==== 在 QFT 中说“光子是 U(1) 的生成元”,指的是: U(α)=eiαQ,Q=电荷算符U(\alpha) = e^{i \alpha Q}, \quad Q = \text{电荷算符}U(α)=eiαQ,Q=电荷算符 * 这里的 QQQ 是 U(1) 群的生成元,表示电荷对称性。 * 光子对应的场 Aμ(x)A_\mu(x)Aμ(x) 是这个对称性的规范场。 * 换句话说,光子是“作用在带电场子上的量子”的媒介,它把电荷守恒的 U(1) 对称性转化为可传播的相互作用。 : # 量子化后的物理粒子 对矢势场 Aμ(x)A_\mu(x)Aμ(x) 做傅里叶展开: Aμ(x)=∫d3p(2π)32Ep∑λ=±1[aλ(p)ϵμλ(p)e−ip⋅x+aλ†(p)ϵμλ∗(p)eip⋅x]A_\mu(x) = \int \frac{d^3 p}{(2\pi)^3 2 E_p} \sum_{\lambda=\pm1} \left[ a_\lambda(p) \epsilon_\mu^\lambda(p) e^{-i p\cdot x} + a_\lambda^\dagger(p) \epsilon_\mu^{\lambda*}(p) e^{i p\cdot x} \right]Aμ(x)=∫(2π)32Epd3pλ=±1∑[aλ(p)ϵμλ(p)e−ip⋅x+aλ†(p)ϵμλ∗(p)eip⋅x] * aλ†(p)a_\lambda^\dagger(p)aλ†(p) 和 aλ(p)a_\lambda(p)aλ(p) 是光子升降算符。 * ϵμλ\epsilon_\mu^\lambdaϵμλ 是偏振矢量(helicity ±1)。 * 量子化后,每一个 aλ†(p)a_\lambda^\dagger(p)aλ†(p) 都创造一个具有动量 p\mathbf{p}p 和能量 E=∣p∣E = |\mathbf{p}|E=∣p∣ 的光子。 :
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)