Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Yes — let’s make this mechanical. === Yes — let’s make this mechanical. You don’t need to guess what to change: you will (A) replace the definition of x^\hat xx^, (B) delete one lemma, (C) add two lemmas, (D) replace one lemma’s proof, and (E) replace the theorem+proof (and delete the positivity assumption). Below I refer to the exact blocks in the code you pasted. ==== ### ==== It starts at: <syntaxhighlight lang="latex">We will construct a candidate vector supported on $C$ by solving the KKT stationarity equations \emph{restricted to $C$} under the natural sign choice $x_C>0$ (appropriate for PageRank-type solutions). Define the restricted candidate $\hat x$ by \begin{equation}\label{eq:xhat_def_gamma_param} \hat x_{\bar C}:=0, \qquad \hat x_C:=Q_{CC}^{-1}\bigl(b_C-\lambda_C\bigr), \qquad b:=\alpha D^{-1/2}s. \end{equation} </syntaxhighlight> ===== (copy-paste exactly): ===== <syntaxhighlight lang="latex">We will construct a candidate vector supported on $C$ as the \emph{restricted minimizer} of the full objective over vectors with $x_{\bar C}=0$. This avoids imposing (and later proving) a sign pattern such as $\hat x_C>0$. Let $b:=\alpha D^{-1/2}s$. Define $\hat x$ to be the unique minimizer of \begin{equation}\label{eq:xhat_def_gamma_param} \hat x \in \arg\min_{x\in\mathbb{R}^n:\; x_{\bar C}=0}\; \left\{ \frac12 x^\top Qx-\alpha x^\top D^{-1/2}s \;+\; \sum_{i=1}^n \lambda_i |x_i| \right\}. \end{equation} Equivalently, $\hat x_{\bar C}=0$ and $\hat x_C$ uniquely minimizes \[ \min_{x_C\in\mathbb{R}^{|C|}} \left\{ \frac12 x_C^\top Q_{CC}x_C - b_C^\top x_C + \sum_{i\in C}\lambda_i|x_i| \right\}. \] </syntaxhighlight> Keep your equation for ∥bC∥2\|b_C\|_2∥bC∥2 (eq:bC_norm_gamma_param) right after this (no change). ==== ### ==== Remove everything from: <syntaxhighlight lang="latex">\begin{lemma}[Stationarity on $C$]\label{lem:restricted_stationarity_gamma_param} ... \end{proof} </syntaxhighlight> That lemma relied on the closed-form formula QCC−1(bC−λC)Q_{CC}^{-1}(b_C-\lambda_C)QCC−1(bC−λC), which is not the restricted minimizer once the ℓ1\ell_1ℓ1 term can create zeros/sign changes inside CCC. ==== Paste the following exactly where the stationarity lemma used to be: ==== <syntaxhighlight lang="latex">\begin{lemma}[Absolute-value improvement and nonnegativity]\label{lem:abs_improvement_nonneg} Assume $v\in C$ so that $b_C\ge 0$ and $b_{\bar C}=0$. Then for every $x$ with $x_{\bar C}=0$, the componentwise absolute value $|x|$ satisfies \[ F(|x|)\le F(x). \] Consequently, the restricted minimizer $\hat x$ satisfies $\hat x_C\ge 0$ componentwise. \end{lemma} \begin{proof} Fix any $x$ with $x_{\bar C}=0$ and set $y:=|x|$ (so $y_{\bar C}=0$). Write \[ F(x)=\frac12 x^\top Qx - b^\top x + \sum_{i=1}^n \lambda_i|x_i|. \] \emph{Quadratic term.} Since $Q=\frac{1+\alpha}{2}I-\frac{1-\alpha}{2}D^{-1/2}AD^{-1/2}$, we have $Q_{ij}\le 0$ for $i\neq j$. Expand \[ x^\top Qx = \sum_i Q_{ii}x_i^2 + 2\sum_{i<j}Q_{ij}x_i x_j. \] For each $i<j$, $x_i x_j\le |x_i||x_j|=y_i y_j$, and since $Q_{ij}\le 0$ this implies $Q_{ij}x_i x_j \ge Q_{ij}y_i y_j$. Hence $x^\top Qx \ge y^\top Qy$. \emph{Linear term.} Since $b\ge 0$ (here $b=\alpha D^{-1/2}s$ with $s=e_v$) and $y_i=|x_i|\ge x_i$ for all $i$, we have $-b^\top y \le -b^\top x$. \emph{$\ell_1$ term.} $\sum_i \lambda_i|y_i|=\sum_i\lambda_i|x_i|$ by definition. Combining the three comparisons gives $F(y)\le F(x)$. Now let $\hat x$ be the unique restricted minimizer. Then $F(|\hat x|)\le F(\hat x)$, so $|\hat x|$ is also a minimizer. By uniqueness, $|\hat x|=\hat x$, hence $\hat x_C\ge 0$. \end{proof} \begin{lemma}[Restricted KKT on $C$]\label{lem:restricted_KKT_on_C} There exists a vector $z_C\in\mathbb{R}^{|C|}$ such that \begin{equation}\label{eq:restricted_KKT_on_C} Q_{CC}\hat x_C - b_C + z_C = 0, \end{equation} and for every $i\in C$, \begin{equation}\label{eq:zC_in_subdiff} z_{C,i}\in \lambda_i\,\partial|\hat x_i| \subseteq [-\lambda_i,\lambda_i]. \end{equation} In particular, $\|z_C\|_2 \le \|\lambda_C\|_2 = \rho\alpha\sqrt{\mathrm{vol}(C)}$. \end{lemma} \begin{proof} The restricted objective over $x_C$ is strongly convex because $Q_{CC}\succ 0$ and the $\ell_1$ term is convex, so $\hat x_C$ is unique. First-order optimality yields \[ 0\in Q_{CC}\hat x_C - b_C + \partial\!\Big(\sum_{i\in C}\lambda_i|\hat x_i|\Big), \] which is exactly the existence of $z_C$ satisfying \eqref{eq:restricted_KKT_on_C}--\eqref{eq:zC_in_subdiff}. The norm bound follows from $|z_{C,i}|\le \lambda_i$ and $\|\lambda_C\|_2^2=\sum_{i\in C}(\rho\alpha\sqrt{d_i})^2=(\rho\alpha)^2\mathrm{vol}(C)$. \end{proof} </syntaxhighlight> ==== You can keep the statement and label exactly the same; only change the proof so it no longer uses ==== x^C=QCC−1(bC−λC)\hat x_C=Q_{CC}^{-1}(b_C-\lambda_C)x^C=QCC−1(bC−λC). ===== <syntaxhighlight lang="latex">\begin{proof} ===== From Lemma~\ref{lem:restricted_KKT_on_C}, $Q_{CC}\hat x_C=b_C-z_C$, so \[ \|\hat x_C\|_2 \le \|Q_{CC}^{-1}\|_2\,\|b_C-z_C\|_2 \le \|Q_{CC}^{-1}\|_2\bigl(\|b_C\|_2+\|z_C\|_2\bigr). \] Since $\lambda_{\min}(Q_{CC})=\mu_C$, we have $\|Q_{CC}^{-1}\|_2=1/\mu_C$. Also, by \eqref{eq:bC_norm_gamma_param}, $\|b_C\|_2=\alpha/\sqrt{d_v}$. Finally, Lemma~\ref{lem:restricted_KKT_on_C} gives $\|z_C\|_2\le \rho\alpha\sqrt{\mathrm{vol}(C)}$. Substituting yields \eqref{eq:xC_norm_gamma_param}. \end{proof} </syntaxhighlight> Everything else in that lemma (statement and equation eq:xC_norm_gamma_param) stays unchanged. ==== ### ==== Remove these lines entirely: <syntaxhighlight lang="latex">Assume $v\in C$ and that the restricted candidate \eqref{eq:xhat_def_gamma_param} satisfies \begin{equation}\label{eq:xhat_positive_gamma_param} \hat x_C>0\quad\text{(componentwise)}. \end{equation} </syntaxhighlight> ===== Replace everything from: ===== <syntaxhighlight lang="latex">\begin{theorem}[Margin bound parameterized by conductance, internal connectivity, and outside degree] \label{thm:gamma_parameterized_by_cluster} ... \end{proof} </syntaxhighlight> with the following (copy-paste): <syntaxhighlight lang="latex">\begin{theorem}[Margin bound parameterized by conductance, internal connectivity, and outside degree] \label{thm:gamma_parameterized_by_cluster} Assume $v\in C$ and let $\hat x$ be defined by \eqref{eq:xhat_def_gamma_param} (restricted minimizer with $\hat x_{\bar C}=0$). Then: \begin{enumerate} \item[(i)] If $\Delta(C)<\min_{i\in\bar C}\lambda_i=\rho\alpha\sqrt{d_{\mathrm{out}}}$, then $\hat x$ is the \emph{unique} global minimizer of \eqref{eq:ppr_obj_gamma_param}. In particular, $x^\star=\hat x$ and $x^\star_{\bar C}=0$. \item[(ii)] Whenever $x^\star=\hat x$, the \emph{outside} slack (margin on $\bar C$) satisfies the explicit lower bound \begin{equation}\label{eq:gamma_param_bound_gamma_param} \min_{i\in \bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr) \;\ge\; \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C). \end{equation} Equivalently, if $\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}$ for some $\eta\in(0,1)$, then \begin{equation}\label{eq:gamma_eta_bound_gamma_param} \min_{i\in \bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr) \ge \eta\,\rho\alpha\sqrt{d_{\mathrm{out}}}. \end{equation} \end{enumerate} \end{theorem} \begin{proof} We prove (i) and (ii) in order. \medskip\noindent\textbf{Step 1: KKT conditions for \eqref{eq:ppr_obj_gamma_param}.} Since $f$ is differentiable and $g(x)=\sum_i \lambda_i|x_i|$, a point $x$ is optimal if and only if there exists $z\in\partial g(x)$ such that \begin{equation}\label{eq:KKT_gamma_param} \nabla f(x)+z=0. \end{equation} Moreover, $F$ is strongly convex because $f$ is $\alpha$-strongly convex and $g$ is convex, so the minimizer is unique. \medskip\noindent\textbf{Step 2: Build a valid $z\in\partial g(\hat x)$ and verify \eqref{eq:KKT_gamma_param}.} From Lemma~\ref{lem:restricted_KKT_on_C}, there exists $z_C$ such that $Q_{CC}\hat x_C-b_C+z_C=0$ and $z_{C,i}\in[-\lambda_i,\lambda_i]$ for all $i\in C$. Define $z\in\mathbb{R}^n$ by \[ z_i := \begin{cases} (z_C)_i, & i\in C,\\[1mm] -\nabla f(\hat x)_i, & i\in\bar C. \end{cases} \] We claim $z\in\partial g(\hat x)$ provided $|\nabla f(\hat x)_i|\le \lambda_i$ for all $i\in\bar C$. Indeed: \begin{itemize} \item If $i\in C$, then $z_{C,i}\in \lambda_i\,\partial|\hat x_i|$ by Lemma~\ref{lem:restricted_KKT_on_C}, so it is a valid weighted-$\ell_1$ subgradient component on $C$. \item If $i\in\bar C$, then $\hat x_i=0$ and the subgradient condition is $z_i\in[-\lambda_i,\lambda_i]$. This holds if $|z_i|=|\nabla f(\hat x)_i|\le \lambda_i$. \end{itemize} Next we check \eqref{eq:KKT_gamma_param}. On $C$, since $\hat x_{\bar C}=0$, \[ \nabla f(\hat x)_C = (Q\hat x-b)_C = Q_{CC}\hat x_C - b_C, \] hence $\nabla f(\hat x)_C+z_C=0$ by $Q_{CC}\hat x_C-b_C+z_C=0$. On $\bar C$, by construction $\nabla f(\hat x)_{\bar C}+z_{\bar C}=0$. Therefore $\nabla f(\hat x)+z=0$. \medskip\noindent\textbf{Step 3: Enforce the outside inequalities via $\Delta(C)$.} By Lemma~\ref{lem:outside_grad_bound_gamma_param} and Lemma~\ref{lem:xC_norm_gamma_param}, \[ \max_{i\in\bar C}|\nabla f(\hat x)_i| \le \Delta(C). \] Therefore, if $\Delta(C)<\rho\alpha\sqrt{d_{\mathrm{out}}}\le \lambda_i$ for all $i\in\bar C$, then $|\nabla f(\hat x)_i|<\lambda_i$ on $\bar C$, so indeed $z\in\partial g(\hat x)$ and the KKT condition holds. Hence $\hat x$ is a minimizer, and by strong convexity it is the unique minimizer: $\hat x=x^\star$. This proves (i). \medskip\noindent\textbf{Step 4: Lower bound the outside margin on $\bar C$.} Assume $x^\star=\hat x$. Then for every $i\in\bar C$, \[ \lambda_i-|\nabla f(x^\star)_i| =\lambda_i-|\nabla f(\hat x)_i| \ge \lambda_i-\Delta(C) \ge \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C), \] where we used $\lambda_i\ge \rho\alpha\sqrt{d_{\mathrm{out}}}$. Taking the minimum over $i\in\bar C$ yields \eqref{eq:gamma_param_bound_gamma_param}, and the $\eta$-form \eqref{eq:gamma_eta_bound_gamma_param} follows immediately. \end{proof} </syntaxhighlight> ✅ After this change, you no longer need to prove x^C>0\hat x_C>0x^C>0; the theorem is correct with only x^C≥0\hat x_C\ge 0x^C≥0 (which we proved in Lemma lem:abs_improvement_nonneg), and it yields the parameterized slack bound on Cˉ\bar CCˉ (which is what your conductance/outside-degree analysis controls). ==== This updated theorem lower bounds the slack for nodes in Cˉ\bar CCˉ. It does not claim that every node in CCC is nonzero; that cannot be guaranteed just from ϕ(C)\phi(C)ϕ(C), μC\mu_CμC, doutd_{\mathrm{out}}dout (the ℓ1\ell_1ℓ1 term can still zero out interior nodes). ==== If you want, I can show you the minimal additional “interior beta-min” condition that makes the global margin coincide with this outside margin. (And yes: this whole section is for objective (3) in your note. open-problem-fountoulakis22a )
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)