Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Paste the following into your document, and then replace the definition \eqref{eq:xhat_def_gamma_param} and Theorem~\ref{thm:gamma_parameterized_by_cluster} (and its proof) with the revised versions below. ==== <syntaxhighlight lang="latex">% ------------------------------------------------------------ % Fix: define \hat x as the restricted minimizer (no sign guess), % prove \hat x_C \ge 0, and use its KKT multiplier z_C. % ------------------------------------------------------------ \subsubsection*{Restricted minimizer on a candidate cluster} Define the restricted optimization problem on $C$ by fixing $x_{\bar C}=0$: \begin{equation}\label{eq:restricted_problem_C} \min_{x\in\mathbb{R}^n:\; x_{\bar C}=0}\; F(x) = \frac12 x^\top Qx-\alpha x^\top D^{-1/2}s \;+\; \sum_{i\in C}\lambda_i |x_i|, \qquad \lambda_i=\rho\alpha\sqrt{d_i}. \end{equation} \begin{definition}[Restricted minimizer]\label{def:xhat_restricted} Let $\hat x$ denote the unique minimizer of \eqref{eq:restricted_problem_C}. Equivalently, $\hat x_{\bar C}=0$ and $\hat x_C$ is the unique minimizer of \[ \min_{x_C\in\mathbb{R}^{|C|}}\; \frac12 x_C^\top Q_{CC}x_C - b_C^\top x_C + \sum_{i\in C}\lambda_i|x_i|, \qquad b:=\alpha D^{-1/2}s. \] \end{definition} \begin{lemma}[Absolute-value improvement and nonnegativity]\label{lem:abs_improvement_nonneg} Assume $v\in C$ so that $b_C\ge 0$ and $b_{\bar C}=0$. Then: \begin{enumerate} \item For every $x$ with $x_{\bar C}=0$, the vector $|x|$ (componentwise absolute value) satisfies \[ F(|x|)\le F(x). \] \item Consequently, the restricted minimizer satisfies $\hat x_C\ge 0$ componentwise. \end{enumerate} \end{lemma} \begin{proof} Fix any $x$ with $x_{\bar C}=0$ and set $y:=|x|$ (so $y_{\bar C}=0$). We compare each term in $F$. \medskip\noindent\textbf{(i) Quadratic term.} Since $Q=\frac{1+\alpha}{2}I-\frac{1-\alpha}{2}D^{-1/2}AD^{-1/2}$, we have $Q_{ij}\le 0$ for $i\neq j$. Write \[ x^\top Qx = \sum_i Q_{ii}x_i^2 + 2\sum_{i<j}Q_{ij}x_i x_j. \] For each $i<j$, we have $x_i x_j \le |x_i||x_j|=y_i y_j$, and since $Q_{ij}\le 0$ this implies $Q_{ij}x_i x_j \ge Q_{ij}y_i y_j$. Therefore $x^\top Qx \ge y^\top Qy$. \medskip\noindent\textbf{(ii) Linear term.} Since $b\ge 0$ and $y_i=|x_i|\ge x_i$ for all $i$, we have $-b^\top y \le -b^\top x$. \medskip\noindent\textbf{(iii) $\ell_1$ term.} By definition, $\sum_i \lambda_i |y_i|=\sum_i\lambda_i|x_i|$. \medskip\noindent Combining (i)--(iii) yields $F(y)\le F(x)$, proving the first claim. For the second claim, let $\hat x$ be the unique restricted minimizer. Then $F(|\hat x|)\le F(\hat x)$, so $|\hat x|$ is also a minimizer. By uniqueness, $|\hat x|=\hat x$, hence $\hat x_C\ge 0$. \end{proof} \begin{lemma}[Restricted KKT on $C$]\label{lem:restricted_KKT_on_C} There exists a vector $z_C\in\mathbb{R}^{|C|}$ such that \begin{equation}\label{eq:restricted_KKT} Q_{CC}\hat x_C - b_C + z_C = 0, \end{equation} and for every $i\in C$, \begin{equation}\label{eq:zC_bound} z_{C,i}\in \lambda_i\,\partial |\,\hat x_i\,| \subseteq [-\lambda_i,\lambda_i]. \end{equation} In particular, $|z_{C,i}|\le \lambda_i$ for all $i\in C$, and thus $\|z_C\|_2 \le \|\lambda_C\|_2 = \rho\alpha\sqrt{\mathrm{vol}(C)}$. \end{lemma} \begin{proof} The restricted objective in \eqref{eq:restricted_problem_C} is strongly convex in $x_C$ because $Q_{CC}\succ 0$ and the $\ell_1$ term is convex, hence it has a unique minimizer $\hat x_C$. First-order optimality for convex composite problems gives \[ 0 \in Q_{CC}\hat x_C - b_C + \partial\!\left(\sum_{i\in C}\lambda_i|\hat x_i|\right), \] which is exactly the existence of $z_C$ satisfying \eqref{eq:restricted_KKT}--\eqref{eq:zC_bound}. The norm bound follows from $|z_{C,i}|\le\lambda_i$ and the definition of $\|\lambda_C\|_2$. \end{proof} \begin{lemma}[Bounding $\|\hat x_C\|_2$ by internal connectivity]\label{lem:xhatC_norm_gamma_param_fixed} Let $\mu_C=\lambda_{\min}(Q_{CC})$. Then \[ \|\hat x_C\|_2 \le \frac{1}{\mu_C}\left(\|b_C\|_2+\|z_C\|_2\right) \le \frac{1}{\mu_C}\left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \] \end{lemma} \begin{proof} From \eqref{eq:restricted_KKT}, $Q_{CC}\hat x_C=b_C-z_C$, so \[ \|\hat x_C\|_2 \le \|Q_{CC}^{-1}\|_2\,\|b_C-z_C\|_2 \le \frac{1}{\mu_C}\left(\|b_C\|_2+\|z_C\|_2\right). \] Since $s=e_v$ and $v\in C$, we have $\|b_C\|_2=\alpha/\sqrt{d_v}$, and Lemma~\ref{lem:restricted_KKT_on_C} gives $\|z_C\|_2\le \rho\alpha\sqrt{\mathrm{vol}(C)}$. \end{proof} </syntaxhighlight> Now here is the revised theorem that replaces the positivity-dependent one. Note how it (correctly) lower bounds an outside margin γCˉ\gamma_{\bar C}γCˉ. If you still want the global γ\gammaγ, you’ll need an extra interior assumption (I add that as an “optional add-on” at the end). <syntaxhighlight lang="latex">\begin{theorem}[Parameterized outside-margin bound without assuming $\hat x_C>0$] \label{thm:gamma_parameterized_by_cluster_fixed} Assume $v\in C$ and let $\hat x$ be the restricted minimizer from Definition~\ref{def:xhat_restricted}. Define \[ \gamma_{\bar C}:=\min_{i\in\bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr), \qquad \lambda_i=\rho\alpha\sqrt{d_i}. \] Let $\Delta(C)$ be defined exactly as in \eqref{eq:DeltaC_def_gamma_param}, but with $\|\hat x_C\|_2$ bounded using Lemma~\ref{lem:xhatC_norm_gamma_param_fixed}; i.e. \[ \Delta(C) := \frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \] Then: \begin{enumerate} \item[(i)] If $\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}$ for some $\eta\in(0,1)$, then $x^\star_{\bar C}=0$ (the global minimizer is supported inside $C$). \item[(ii)] Under the same condition, the \emph{outside margin} satisfies \[ \gamma_{\bar C}\ge \eta\,\rho\alpha\sqrt{d_{\mathrm{out}}}. \] \end{enumerate} \end{theorem} \begin{proof} \medskip\noindent\textbf{Step 1 (Outside-gradient bound).} Since $v\in C$, we have $b_{\bar C}=0$. Because $\hat x_{\bar C}=0$, \[ \nabla f(\hat x)_{\bar C} = (Q\hat x-b)_{\bar C} = (Q_{\bar C C}\hat x_C)_{\bar C}. \] Lemma~\ref{lem:outside_grad_bound_gamma_param} (unchanged) bounds $\max_{i\in\bar C}|\nabla f(\hat x)_i|\le \Delta(C)$, using Lemma~\ref{lem:xhatC_norm_gamma_param_fixed} to control $\|\hat x_C\|_2$. \medskip\noindent\textbf{Step 2 (Build a global KKT certificate).} From Lemma~\ref{lem:restricted_KKT_on_C} there exists $z_C\in\partial g_C(\hat x_C)$ such that $Q_{CC}\hat x_C-b_C+z_C=0$. Define a full vector $z\in\mathbb{R}^n$ by \[ z_i := \begin{cases} (z_C)_i, & i\in C,\\[1mm] -\nabla f(\hat x)_i, & i\in\bar C. \end{cases} \] We claim $z\in\partial g(\hat x)$ provided $|\nabla f(\hat x)_i|\le \lambda_i$ for all $i\in\bar C$. Indeed: \begin{itemize} \item On $C$, $z_C\in\partial g_C(\hat x_C)$ by construction. \item On $\bar C$, $\hat x_i=0$, and the subgradient condition is $z_i\in[-\lambda_i,\lambda_i]$. This holds if $|z_i|=|\nabla f(\hat x)_i|\le \lambda_i$. \end{itemize} Under the hypothesis $\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}$ we have $|\nabla f(\hat x)_i|\le \Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}\le \lambda_i$ for all $i\in\bar C$ (since $\lambda_i\ge \rho\alpha\sqrt{d_{\mathrm{out}}}$). Thus $z\in\partial g(\hat x)$. Finally, note that for $i\in C$, \[ (\nabla f(\hat x)+z)_i = (Q_{CC}\hat x_C-b_C+z_C)_i = 0, \] and for $i\in\bar C$ we have $(\nabla f(\hat x)+z)_i= \nabla f(\hat x)_i-\nabla f(\hat x)_i=0$. Hence $\nabla f(\hat x)+z=0$ with $z\in\partial g(\hat x)$, i.e. $0\in\partial F(\hat x)$. Therefore $\hat x$ is a global minimizer. By strong convexity, it is the unique global minimizer: $\hat x=x^\star$. In particular $x^\star_{\bar C}=0$, proving (i). \medskip\noindent\textbf{Step 3 (Outside margin).} Since $x^\star=\hat x$ and $\bar C\subseteq I^\star$, for every $i\in\bar C$, \[ \lambda_i-|\nabla f(x^\star)_i| =\lambda_i-|\nabla f(\hat x)_i| \ge \lambda_i-\Delta(C) \ge \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C) \ge \eta\rho\alpha\sqrt{d_{\mathrm{out}}}. \] Taking the minimum over $i\in\bar C$ yields $\gamma_{\bar C}\ge \eta\rho\alpha\sqrt{d_{\mathrm{out}}}$, proving (ii). \end{proof} \begin{remark}[Why this does not automatically give the \emph{global} margin $\gamma$] The global margin is $\gamma=\min_{i\in I^\star}(\lambda_i-|\nabla f(x^\star)_i|)$, where $I^\star$ includes \emph{all} zero coordinates of $x^\star$, including any zeros inside $C$. The theorem above lower bounds the margin only on $\bar C$. To conclude the same lower bound for the global $\gamma$, one needs an additional assumption that $x^\star_i>0$ for all $i\in C$ (equivalently, $I^\star=\bar C$), or else a separate lower bound on the slack for the (possibly) inactive indices inside $C$. Such an ``interior beta-min / interior slack'' condition cannot be forced solely from $\phi(C)$, $\mu_C$, and $d_{\mathrm{out}}$: even an internally expanding cluster with $\phi(C)=0$ can have many coordinates truncated to $0$ if $\rho$ is chosen large. \end{remark} </syntaxhighlight> ===== - No, ρ\rhoρ vs. ϕ(C)\phi(C)ϕ(C) does not guarantee x^C>0\hat x_C>0x^C>0. ===== * The right fix is to: - define x^\hat xx^ as the restricted minimizer, - prove x^C≥0\hat x_C\ge 0x^C≥0 (done above), - and then your conductance/connectivity/degree bound gives a clean Ω(ρ)\Omega(\sqrt{\rho})Ω(ρ) outside margin. If you tell me whether you truly need the global γ\gammaγ (including possible zeros inside CCC) or whether an outside margin γCˉ\gamma_{\bar C}γCˉ is sufficient for your downstream argument (runtime/locality), I can tighten the statement accordingly.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)