Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Append the following replacement section it gives an explicit parameterized lower bound on the margin γ\gammaγ in terms… === Append the following replacement section (it gives an explicit parameterized lower bound on the margin γ\gammaγ in terms of conductance, internal connectivity, and outside degree, and then a corollary showing when this becomes Ω(ρ)\Omega(\sqrt{\rho})Ω(ρ)). open-problem-fountoulakis22a <syntaxhighlight lang="latex">% ============================================================ \section{A conductance--connectivity--degree lower bound on the margin} \label{sec:gamma_conductance_connectivity_degree} We specialize to the $\ell_1$-regularized PageRank objective~(3): \begin{equation}\label{eq:ppr_obj_gamma_param} \min_{x\in\mathbb{R}^n} F(x) := \underbrace{\frac12 x^\top Qx-\alpha x^\top D^{-1/2}s}_{=:f(x)} \;+\; \underbrace{\rho\alpha\|D^{1/2}x\|_1}_{=:g(x)}. \end{equation} Here $G=(V,E)$ is undirected and unweighted, $A$ is the adjacency matrix, $D$ is the diagonal degree matrix, $s=e_v$ is a seed at node $v$, and \begin{equation}\label{eq:Q_def_gamma_param} Q=\alpha I+\frac{1-\alpha}{2}L = \frac{1+\alpha}{2}I-\frac{1-\alpha}{2}\,D^{-1/2}AD^{-1/2}. \end{equation} The weighted $\ell_1$ penalty has coordinate weights \begin{equation}\label{eq:lambda_def_gamma_param} g(x)=\sum_{i=1}^n \lambda_i |x_i|, \qquad \lambda_i:=\rho\alpha\sqrt{d_i}. \end{equation} \paragraph{Cluster notation.} Fix a set (candidate cluster) $C\subseteq V$ with $v\in C$, and let $\bar C:=V\setminus C$. Define the volume and cut: \[ \mathrm{vol}(C):=\sum_{i\in C} d_i, \qquad \mathrm{cut}(C,\bar C):=|\{(i,j)\in E:\; i\in C,\ j\in\bar C\}|. \] We use the (one-sided) conductance \[ \phi(C):=\frac{\mathrm{cut}(C,\bar C)}{\mathrm{vol}(C)}. \] Let \[ d_{\mathrm{in}}:=\min_{j\in C} d_j, \qquad d_{\mathrm{out}}:=\min_{i\in\bar C} d_i, \qquad d_v:=d_{v}. \] \paragraph{Internal connectivity parameter.} Let \begin{equation}\label{eq:muC_def_gamma_param} \mu_C:=\lambda_{\min}(Q_{CC}), \end{equation} the smallest eigenvalue of the principal submatrix $Q_{CC}$. Since $Q\succeq \alpha I$, we always have $\mu_C\ge \alpha$, and larger $\mu_C$ corresponds to stronger internal connectivity/conditioning on the cluster. \subsection{A pointwise bound on the outside gradient in terms of $\phi(C)$ and $\mu_C$} We will construct a candidate vector supported on $C$ by solving the KKT stationarity equations \emph{restricted to $C$} under the natural sign choice $x_C>0$ (appropriate for PageRank-type solutions). Define the restricted candidate $\hat x$ by \begin{equation}\label{eq:xhat_def_gamma_param} \hat x_{\bar C}:=0, \qquad \hat x_C:=Q_{CC}^{-1}\bigl(b_C-\lambda_C\bigr), \qquad b:=\alpha D^{-1/2}s. \end{equation} Since $s=e_v$ and $v\in C$, the vector $b_C$ has exactly one nonzero entry: \begin{equation}\label{eq:bC_norm_gamma_param} \|b_C\|_2=\frac{\alpha}{\sqrt{d_v}}. \end{equation} \begin{lemma}[Stationarity on $C$]\label{lem:restricted_stationarity_gamma_param} The vector $\hat x$ satisfies the exact stationarity equation on $C$: \begin{equation}\label{eq:restricted_stationarity_gamma_param} \nabla f(\hat x)_C+\lambda_C = 0. \end{equation} \end{lemma} \begin{proof} Since $\nabla f(x)=Qx-b$, and $\hat x_{\bar C}=0$, we have \[ \nabla f(\hat x)_C = (Q_{CC}\hat x_C - b_C). \] By the definition \eqref{eq:xhat_def_gamma_param}, $Q_{CC}\hat x_C=b_C-\lambda_C$, hence $\nabla f(\hat x)_C = -\lambda_C$, which is \eqref{eq:restricted_stationarity_gamma_param}. \end{proof} Next we bound the gradient on $\bar C$ in terms of conductance, internal connectivity, and outside degree. \begin{lemma}[Bounding $\|\hat x_C\|_2$ by internal connectivity]\label{lem:xC_norm_gamma_param} Let $\mu_C=\lambda_{\min}(Q_{CC})$. Then \begin{equation}\label{eq:xC_norm_gamma_param} \|\hat x_C\|_2 \;\le\; \frac{1}{\mu_C}\left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \end{equation} \end{lemma} \begin{proof} Since $Q_{CC}$ is symmetric positive definite and $\lambda_{\min}(Q_{CC})=\mu_C$, \[ \|Q_{CC}^{-1}\|_2 = \frac{1}{\mu_C}. \] Using \eqref{eq:xhat_def_gamma_param} and the triangle inequality, \[ \|\hat x_C\|_2 = \left\|Q_{CC}^{-1}(b_C-\lambda_C)\right\|_2 \le \|Q_{CC}^{-1}\|_2\bigl(\|b_C\|_2+\|\lambda_C\|_2\bigr). \] By \eqref{eq:bC_norm_gamma_param}, $\|b_C\|_2=\alpha/\sqrt{d_v}$. Also, by \eqref{eq:lambda_def_gamma_param}, \[ \|\lambda_C\|_2^2=\sum_{i\in C} (\rho\alpha\sqrt{d_i})^2 =(\rho\alpha)^2\sum_{i\in C} d_i =(\rho\alpha)^2\,\mathrm{vol}(C), \] so $\|\lambda_C\|_2=\rho\alpha\sqrt{\mathrm{vol}(C)}$. Substitute these bounds to obtain \eqref{eq:xC_norm_gamma_param}. \end{proof} \begin{lemma}[Outside gradient bound from conductance and degrees]\label{lem:outside_grad_bound_gamma_param} Assume $v\in C$ so that $b_{\bar C}=0$. Then for each $i\in\bar C$, \begin{equation}\label{eq:outside_grad_pointwise_gamma_param} |\nabla f(\hat x)_i| \le \frac{1-\alpha}{2}\,\|\hat x_C\|_2\, \sqrt{\frac{\mathrm{cut}(C,\bar C)}{d_i\,d_{\mathrm{in}}}}. \end{equation} Consequently, using $d_i\ge d_{\mathrm{out}}$ and $\mathrm{cut}(C,\bar C)=\phi(C)\mathrm{vol}(C)$, \begin{equation}\label{eq:outside_grad_uniform_gamma_param} \max_{i\in\bar C}|\nabla f(\hat x)_i| \le \frac{1-\alpha}{2}\,\|\hat x_C\|_2\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}. \end{equation} \end{lemma} \begin{proof} Fix $i\in\bar C$. Since $\hat x_{\bar C}=0$ and $b_{\bar C}=0$, \[ \nabla f(\hat x)_i = (Q\hat x - b)_i = (Q_{\bar C C}\hat x_C)_i = \sum_{j\in C}Q_{ij}\hat x_j. \] From \eqref{eq:Q_def_gamma_param}, for $i\neq j$ we have \[ Q_{ij} = -\frac{1-\alpha}{2}(D^{-1/2}AD^{-1/2})_{ij} = \begin{cases} -\dfrac{1-\alpha}{2}\dfrac{1}{\sqrt{d_i d_j}}, & (i,j)\in E,\\[2mm] 0, & (i,j)\notin E. \end{cases} \] Thus \[ |\nabla f(\hat x)_i| = \left|\sum_{j\in C\cap N(i)} -\frac{1-\alpha}{2}\frac{\hat x_j}{\sqrt{d_i d_j}}\right| \le \frac{1-\alpha}{2}\cdot \frac{1}{\sqrt{d_i}} \sum_{j\in C\cap N(i)}\frac{|\hat x_j|}{\sqrt{d_j}}. \] Apply Cauchy--Schwarz to the sum: \[ \sum_{j\in C\cap N(i)}\frac{|\hat x_j|}{\sqrt{d_j}} \le \left(\sum_{j\in C\cap N(i)} \hat x_j^2\right)^{1/2} \left(\sum_{j\in C\cap N(i)} \frac{1}{d_j}\right)^{1/2} \le \|\hat x_C\|_2\left(\sum_{j\in C\cap N(i)} \frac{1}{d_j}\right)^{1/2}. \] Since $d_j\ge d_{\mathrm{in}}$ for all $j\in C$, we have \[ \sum_{j\in C\cap N(i)} \frac{1}{d_j} \le \frac{|C\cap N(i)|}{d_{\mathrm{in}}}. \] Finally, $|C\cap N(i)|$ is the number of cut edges incident to $i$, hence $|C\cap N(i)|\le \mathrm{cut}(C,\bar C)$, which gives \eqref{eq:outside_grad_pointwise_gamma_param}. The uniform bound \eqref{eq:outside_grad_uniform_gamma_param} follows by using $d_i\ge d_{\mathrm{out}}$ and $\mathrm{cut}(C,\bar C)=\phi(C)\mathrm{vol}(C)$. \end{proof} \subsection{A parameterized margin lower bound and a $\sqrt{\rho}$ corollary} Define the cluster-dependent quantity \begin{equation}\label{eq:DeltaC_def_gamma_param} \Delta(C) := \frac{1-\alpha}{2\mu_C}\, \sqrt{\frac{\phi(C)\mathrm{vol}(C)}{d_{\mathrm{out}}\,d_{\mathrm{in}}}}\, \left(\frac{\alpha}{\sqrt{d_v}}+\rho\alpha\sqrt{\mathrm{vol}(C)}\right). \end{equation} \begin{theorem}[Margin bound parameterized by conductance, internal connectivity, and outside degree] \label{thm:gamma_parameterized_by_cluster} Assume $v\in C$ and that the restricted candidate \eqref{eq:xhat_def_gamma_param} satisfies \begin{equation}\label{eq:xhat_positive_gamma_param} \hat x_C>0\quad\text{(componentwise)}. \end{equation} Then: \begin{enumerate} \item[(i)] If $\Delta(C)<\min_{i\in\bar C}\lambda_i=\rho\alpha\sqrt{d_{\mathrm{out}}}$, then $\hat x$ is the \emph{unique} global minimizer of \eqref{eq:ppr_obj_gamma_param}. In particular, $x^\star=\hat x$ and $x^\star_{\bar C}=0$. \item[(ii)] Whenever $x^\star=\hat x$, the strict-complementarity margin satisfies the explicit lower bound \begin{equation}\label{eq:gamma_param_bound_gamma_param} \gamma = \min_{i\in \bar C}\Bigl(\lambda_i-|\nabla f(x^\star)_i|\Bigr) \;\ge\; \rho\alpha\sqrt{d_{\mathrm{out}}}-\Delta(C). \end{equation} Equivalently, if $\Delta(C)\le (1-\eta)\rho\alpha\sqrt{d_{\mathrm{out}}}$ for some $\eta\in(0,1)$, then \begin{equation}\label{eq:gamma_eta_bound_gamma_param} \gamma \ge \eta\,\rho\alpha\sqrt{d_{\mathrm{out}}}. \end{equation} \end{enumerate} \end{theorem} \begin{proof} We prove (i) and (ii) in order. \medskip\noindent\textbf{Step 1: KKT conditions for \eqref{eq:ppr_obj_gamma_param}.} Since $f$ is differentiable and $g(x)=\sum_i \lambda_i|x_i|$, a point $x$ is optimal if and only if there exists $z\in\partial g(x)$ such that \begin{equation}\label{eq:KKT_gamma_param} \nabla f(x)+z=0. \end{equation} Moreover, $F$ is strongly convex because $f$ is $\alpha$-strongly convex and $g$ is convex, so the minimizer is unique. \medskip\noindent\textbf{Step 2: Build a valid $z\in\partial g(\hat x)$ and verify \eqref{eq:KKT_gamma_param}.} Because of \eqref{eq:xhat_positive_gamma_param}, $\mathrm{sign}(\hat x_i)=+1$ for all $i\in C$. Define $z\in\mathbb{R}^n$ by \[ z_i := \begin{cases} \lambda_i, & i\in C,\\[1mm] -\nabla f(\hat x)_i, & i\in\bar C. \end{cases} \] We claim $z\in\partial g(\hat x)$ provided $|\nabla f(\hat x)_i|\le \lambda_i$ for all $i\in\bar C$. Indeed: \begin{itemize} \item If $i\in C$, then $\hat x_i>0$ and the weighted-$\ell_1$ subgradient requires $z_i=\lambda_i$, which holds. \item If $i\in\bar C$, then $\hat x_i=0$ and the subgradient condition is $z_i\in[-\lambda_i,\lambda_i]$. This holds if $|z_i|=|\nabla f(\hat x)_i|\le \lambda_i$. \end{itemize} Next, Lemma~\ref{lem:restricted_stationarity_gamma_param} gives $\nabla f(\hat x)_C=-\lambda_C$, so $\nabla f(\hat x)_C+z_C=0$. By definition, $\nabla f(\hat x)_{\bar C}+z_{\bar C}=0$. Thus \eqref{eq:KKT_gamma_param} holds. \medskip\noindent\textbf{Step 3: Enforce the outside inequalities via $\Delta(C)$.} By Lemma~\ref{lem:outside_grad_bound_gamma_param} and Lemma~\ref{lem:xC_norm_gamma_param}, \[ \max_{i\in\bar C}|\nabla f(\hat x)_i| \le \Delta(C). \] Therefore, if $\Delta(C)<\rho\alpha\sqrt{d_{\mathrm{out}}}\le \lambda_i$ for all $i\in\bar C$, then $|\nabla f(\hat x)_i|<\lambda_i$ on $\bar C$, so $z\in\partial g(\hat x)$ and the KKT condition holds. Hence $\hat x$ is a minimizer, and by strong convexity it is the unique minimizer: $\hat x=x^\star$. This proves (i). \medskip\noindent\textbf{Step 4: Lower bound the margin.} Assume $x^\star=\hat x$. Since $x^\star_{\bar C}=0$, the inactive set contains $\bar C$ and \[ \gamma = \min_{i\in \bar C}\bigl(\lambda_i-|\nabla f(x^\star)_i|\bigr) \ge \min_{i\in\bar C}\lambda_i - \max_{i\in\bar C}|\nabla f(\hat x)_i| = \rho\alpha\sqrt{d_{\mathrm{out}}} - \max_{i\in\bar C}|\nabla f(\hat x)_i|. \] Using $\max_{i\in\bar C}|\nabla f(\hat x)_i|\le \Delta(C)$ gives \eqref{eq:gamma_param_bound_gamma_param}. The $\eta$-form \eqref{eq:gamma_eta_bound_gamma_param} is immediate. \end{proof} \begin{corollary}[A concrete $\gamma=\Omega(\sqrt{\rho})$ regime]\label{cor:gamma_Omega_sqrt_rho_regime} Assume the hypotheses of Theorem~\ref{thm:gamma_parameterized_by_cluster}. Suppose, in addition, that there are constants $V_0,d_0,\mu_0,c_0>0$ such that \[ \mathrm{vol}(C)\le \frac{V_0}{\rho},\qquad d_{\mathrm{in}}\ge d_0,\qquad d_v\ge d_0,\qquad \mu_C\ge \mu_0,\qquad d_{\mathrm{out}}\ge \frac{c_0}{\alpha^2\rho}. \] If furthermore the conductance satisfies \begin{equation}\label{eq:phi_rho_condition_gamma_param} \phi(C)\le c_1\rho \quad\text{for a sufficiently small constant $c_1$ (depending only on $V_0,d_0,\mu_0,c_0,\alpha$),} \end{equation} then there exists a constant $\eta\in(0,1)$ (depending only on the same parameters) such that \[ \gamma \ge \eta\,\sqrt{\rho}. \] \end{corollary} \begin{proof} From $d_{\mathrm{out}}\ge c_0/(\alpha^2\rho)$ we get \[ \rho\alpha\sqrt{d_{\mathrm{out}}}\ge \rho\alpha\sqrt{\frac{c_0}{\alpha^2\rho}}=\sqrt{c_0}\,\sqrt{\rho}. \] Next, using the assumed bounds in \eqref{eq:DeltaC_def_gamma_param}, \[ \Delta(C) \le \frac{1-\alpha}{2\mu_0}\, \sqrt{\frac{\phi(C)\cdot (V_0/\rho)}{(c_0/(\alpha^2\rho))\cdot d_0}}\, \left(\frac{\alpha}{\sqrt{d_0}}+\rho\alpha\sqrt{V_0/\rho}\right) = \frac{1-\alpha}{2\mu_0}\, \alpha\,\sqrt{\frac{V_0}{c_0 d_0}}\, \sqrt{\phi(C)}\, \left(\frac{\alpha}{\sqrt{d_0}}+\alpha\sqrt{V_0}\sqrt{\rho}\right). \] Under \eqref{eq:phi_rho_condition_gamma_param}, $\sqrt{\phi(C)}\le \sqrt{c_1}\sqrt{\rho}$, hence $\Delta(C)\le K\sqrt{\rho}$ for a constant $K$ depending only on $(V_0,d_0,\mu_0,c_0,\alpha)$ and $c_1$. Choosing $c_1$ sufficiently small ensures $\Delta(C)\le (1-\eta)\sqrt{c_0}\sqrt{\rho}$ for some $\eta\in(0,1)$. Applying \eqref{eq:gamma_param_bound_gamma_param} then yields $\gamma\ge \eta\sqrt{c_0}\sqrt{\rho}$. Absorbing $\sqrt{c_0}$ into $\eta$ gives the stated $\gamma\ge \eta\sqrt{\rho}$. \end{proof} \begin{remark}[Interpretation] The quantity $\Delta(C)$ in \eqref{eq:DeltaC_def_gamma_param} is explicit and shows how the margin depends on: (i) the \emph{outside degree} $d_{\mathrm{out}}$ through the threshold $\lambda_i=\rho\alpha\sqrt{d_i}$, (ii) the \emph{boundary size} through $\phi(C)$, and (iii) the \emph{internal conditioning} $\mu_C=\lambda_{\min}(Q_{CC})$. When $\phi(C)=O(\rho)$, $d_{\mathrm{out}}=\Theta(1/(\alpha^2\rho))$, and $\mu_C$ is bounded below, the bound forces $\gamma=\Omega(\sqrt{\rho})$. \end{remark} % ============================================================ </syntaxhighlight>
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)