Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69143373-dd04-800c-b816-c177b3629d06
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Partimos de la acción (concretada): === S=∫d4x−g[116πGR+αgμν∇μΨ∗∇νΨ−V(C)−β(gμν∇μθ∇νθ−κC)2],S=\int d^4x\sqrt{-g}\Big[\frac{1}{16\pi G}R + \alpha g^{\mu\nu}\nabla_\mu\Psi^*\nabla_\nu\Psi - V(C) - \beta\big(g^{\mu\nu}\nabla_\mu\theta\nabla_\nu\theta - \kappa C\big)^2\Big],S=∫d4x−g[16πG1R+αgμν∇μΨ∗∇νΨ−V(C)−β(gμν∇μθ∇νθ−κC)2], con Ψ=C eiθ\Psi=\sqrt{C}\,e^{i\theta}Ψ=Ceiθ y elegimos V(C)=12mC2C2+λ4C4V(C)=\tfrac{1}{2}m_C^2 C^2 + \tfrac{\lambda}{4}C^4V(C)=21mC2C2+4λC4. ==== Calculamos ∇μΨ\nabla_\mu\Psi∇μΨ: ==== ∇μΨ=12C−1/2∂μC eiθ+iC ∂μθ eiθ.\nabla_\mu\Psi = \frac{1}{2}C^{-1/2}\partial_\mu C\,e^{i\theta} + i\sqrt{C}\,\partial_\mu\theta\,e^{i\theta}.∇μΨ=21C−1/2∂μCeiθ+iC∂μθeiθ. Entonces (usando gμν∇μΨ∗∇νΨg^{\mu\nu}\nabla_\mu\Psi^*\nabla_\nu\Psigμν∇μΨ∗∇νΨ): gμν∇μΨ∗∇νΨ=14C(∂C)2+C (∂θ)2.g^{\mu\nu}\nabla_\mu\Psi^*\nabla_\nu\Psi = \frac{1}{4C}(\partial C)^2 + C\,(\partial\theta)^2.gμν∇μΨ∗∇νΨ=4C1(∂C)2+C(∂θ)2. (Se omiten términos de orden superior en derivadas cruzadas que se cancelan a primera orden al separar parte real/imag) Por tanto el Lagrangiano de coherencia principal (cinético) es: LΨ=α(14C(∂C)2+C(∂θ)2)−V(C).\mathcal{L}_\Psi = \alpha\left(\frac{1}{4C}(\partial C)^2 + C(\partial\theta)^2\right) - V(C).LΨ=α(4C1(∂C)2+C(∂θ)2)−V(C). ==== Lint=−β(gμν∂μθ∂νθ−κC)2.\mathcal{L}_{\text{int}} = -\beta\left(g^{\mu\nu}\partial_\mu\theta\partial_\nu\theta - \kappa C\right)^2.Lint=−β(gμν∂μθ∂νθ−κC)2. ==== Este término penaliza desvinculaciones entre gradientes de fase y la densidad de coherencia. ==== Fondo plano y estacionario: ==== gμν=ημν+hμν,C=C0+δC,θ=ωt+φ(x).g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu},\quad C=C_0+\delta C,\quad \theta=\omega t + \varphi(x).gμν=ημν+hμν,C=C0+δC,θ=ωt+φ(x). Asumimos ∣hμν∣≪1, ∣δC∣≪C0, ∣φ∣≪1 |h_{\mu\nu}|\ll1,\ |\delta C|\ll C_0,\ |\varphi|\ll1∣hμν∣≪1, ∣δC∣≪C0, ∣φ∣≪1. Expandimos a primer orden. Notas clave: * (∂θ)2≈−ω2+2ω∂0φ+(∂φ)2+hμνω2δμ0δν0+⋯(\partial\theta)^2 \approx -\omega^2 + 2\omega\partial_0\varphi + (\partial\varphi)^2 + h^{\mu\nu}\omega^2\delta_\mu^0\delta_\nu^0 + \cdots(∂θ)2≈−ω2+2ω∂0φ+(∂φ)2+hμνω2δμ0δν0+⋯. * El término (gμν∂μθ∂νθ−κC)2\left(g^{\mu\nu}\partial_\mu\theta\partial_\nu\theta - \kappa C\right)^2(gμν∂μθ∂νθ−κC)2 al expandir da primero una pieza cuadrática en δC\delta CδC y en φ\varphiφ y un término lineal que fija la condición de fondo: −β(−ω2−κC0)2+(lineales/perturbaciones).-\beta\left(-\omega^2 - \kappa C_0\right)^2 + \text{(lineales/perturbaciones)}.−β(−ω2−κC0)2+(lineales/perturbaciones). Podemos fijar el fondo C0C_0C0 y ω\omegaω tal que el término de penalización se minimice, es decir imponiendo ω2=κC0\omega^2 = \kappa C_0ω2=κC0 (como condición de sintonía de fondo). ==== La variación funcional respecto a θ\thetaθ da (tras agrupar términos y suponer fondo sintonizado): ==== αC0 □φ+4βω2 □φ−mφ2 φ=0,\alpha C_0\,\Box\varphi + 4\beta\omega^2\,\Box\varphi - m_\varphi^2\,\varphi = 0,αC0□φ+4βω2□φ−mφ2φ=0, donde el término "masa" efectivo surge de expandir el cuadrado de interacción y de V′(C)V'(C)V′(C) acoplado, y puede escribirse como mφ2=2βκ+α′(constantes que dependen de V′′(C0),f′(C0)).m_\varphi^2 = 2\beta\kappa + \alpha' \quad (\text{constantes que dependen de } V''(C_0), f'(C_0) ).mφ2=2βκ+α′(constantes que dependen de V′′(C0),f′(C0)). Reordenando: (αC0+4βω2) □φ=mφ2 φ.(\alpha C_0 + 4\beta\omega^2)\,\Box\varphi = m_\varphi^2\,\varphi.(αC0+4βω2)□φ=mφ2φ. Para ondas planas φ∝ei(k⋅x−Ωt)\varphi\propto e^{i(\mathbf{k\cdot x}-\Omega t)}φ∝ei(k⋅x−Ωt), obtenemos la relación de dispersión: (αC0+4βω2)(Ω2−∣k∣2)=mφ2.(\alpha C_0 + 4\beta\omega^2)(\Omega^2 - |\mathbf{k}|^2) = m_\varphi^2.(αC0+4βω2)(Ω2−∣k∣2)=mφ2. Por tanto Ω2(k)=∣k∣2+mφ2αC0+4βω2.\boxed{\Omega^2(\mathbf{k}) = |\mathbf{k}|^2 + \dfrac{m_\varphi^2}{\alpha C_0 + 4\beta\omega^2}.}Ω2(k)=∣k∣2+αC0+4βω2mφ2. Esto muestra que los modos de fase φ\varphiφ tienen una masa efectiva y propagación modificada por la coherencia de fondo y el acoplamiento β\betaβ. ==== Obtenemos un campo con dinámica del tipo: ==== α□δC+MC2δC=Sφ,h,\alpha\Box\delta C + M_C^2\delta C = S_{\varphi,h},α□δC+MC2δC=Sφ,h, con MC2=V′′(C0)M_C^2=V''(C_0)MC2=V′′(C0) y fuente Sφ,hS_{\varphi,h}Sφ,h que contiene términos del tipo C0(∂φ)2C_0(\partial\varphi)^2C0(∂φ)2 y combinaciones lineales con hμνh_{\mu\nu}hμν. ==== La variación respecto a gμνg_{\mu\nu}gμν da (en gauge armónico y lineal): ==== □hˉμν=−16πG(Tμνmat+Tμν(Ψ)+Tμνint),\Box \bar h_{\mu\nu} = -16\pi G \left(T_{\mu\nu}^{\text{mat}} + T_{\mu\nu}^{(\Psi)} + T_{\mu\nu}^{\text{int}}\right),□hˉμν=−16πG(Tμνmat+Tμν(Ψ)+Tμνint), donde la porción relevante del tensor de coherencia tiene el orden de magnitud: Tμν(Ψ)∼αC0 ∂μφ∂νφ+(teˊrminos en δC).T_{\mu\nu}^{(\Psi)} \sim \alpha C_0\,\partial_\mu\varphi\partial_\nu\varphi + \text{(términos en }\delta C).Tμν(Ψ)∼αC0∂μφ∂νφ+(teˊrminos en δC). Así, la amplitud de hμνh_{\mu\nu}hμν excitada por modulación de fase satisface (esquema): hμν(Ω,k)∝16πGαC0 (∂φ)2(Ω,k)k2−Ω2+iϵ.h_{\mu\nu}(\Omega,\mathbf{k}) \propto 16\pi G \frac{\alpha C_0\,(\partial\varphi)^2(\Omega,\mathbf{k})}{k^2 - \Omega^2 + i\epsilon}.hμν(Ω,k)∝16πGk2−Ω2+iϵαC0(∂φ)2(Ω,k). Interpretación física: modulaciones fuertes de fase en regiones de alta C0C_0C0 generan curvatura emergente proporcional a GαC0(∂φ)2G\alpha C_0(\partial\varphi)^2GαC0(∂φ)2.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)