Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693eaf5a-1494-8007-b1e3-00abefb11523
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== The most promising approach is not a single fixed geometric formula, but a parameterized tetrahedral family whose free parameters are fit to historical data via walk-forward backtesting. Concretely: === * Parameterize the tetrahedral apex height and the projection/scale factors (these control how much time vs price contribute). * Fit those parameters by minimizing an error metric (MSE or MAPE) on an in-sample set with walk-forward validation. * Use rolling windows (e.g., last 90 days) to form tetrahedra and predict the next day; aggregate predictions (ensemble) to stabilize noisy results. Below are the concrete model families, optimization method, backtest plan, and evaluation metrics.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)