Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Short answer up front: you prove the mild Duhamel expression is well-defined by placing the extended space inside a Ban… === Short answer up front: you prove the mild (Duhamel) expression is well-defined by placing the extended space inside a Banach algebra (or giving it Banach-type axioms) so you can use Bochner integration + the heat-semigroup smoothing estimate. Below I state a minimal list of explicit, checkable hypotheses and then give the exact estimate/argument that shows the Duhamel integral ∫0teν(t−s)Δ P∇ ⋅(u(s)⊗u(s)) ds\int_0^t e^{\nu (t-s)\Delta}\,P\nabla\!\cdot\big(u(s)\otimes u(s)\big)\,ds∫0teν(t−s)ΔP∇⋅(u(s)⊗u(s))ds is a well-defined element of the space for every t>0t>0t>0 and every uuu in the solution class. I finish with the alternative conditional route if you insist on working in a nonnormed “extended” algebra with a linear limit functional LLL. ==== Fix a Banach space (X,∥⋅∥X)(X,\|\cdot\|_X)(X,∥⋅∥X) of vector fields on R3\mathbb{R}^3R3 with these properties: ==== (H1) Heat semigroup bounds. There exist constants CG>0C_G>0CG>0 and α∈[0,1)\alpha\in[0,1)α∈[0,1) such that for all τ∈(0,T]\tau\in(0,T]τ∈(0,T] ∥eντΔ∥X←Y≤CG τ−α,\|e^{\nu \tau\Delta}\|_{X\leftarrow Y} \le C_G\,\tau^{-\alpha},∥eντΔ∥X←Y≤CGτ−α, for some Banach space YYY with a continuous embedding Y↪XY\hookrightarrow XY↪X. (Often Y=X−1Y=X_{-1}Y=X−1 or Hs−1H^{s-1}Hs−1 while X=HsX=H^sX=Hs; typical α=1/2\alpha=1/2α=1/2.) (H2) Product estimate (algebraic control). There is a constant CBC_BCB such that the bilinear map B(u,v):=P∇ ⋅(u⊗v)B(u,v) := P\nabla\!\cdot(u\otimes v)B(u,v):=P∇⋅(u⊗v) satisfies ∥B(u,v)∥Y≤CB∥u∥X∥v∥Xfor all u,v∈X.\|B(u,v)\|_{Y} \le C_B \|u\|_{X}\|v\|_{X}\qquad\text{for all }u,v\in X.∥B(u,v)∥Y≤CB∥u∥X∥v∥Xfor all u,v∈X. (H3) XXX-continuity in time. We consider functions u∈C([0,T];X)u\in C([0,T];X)u∈C([0,T];X). (You can weaken this, but this is the standard mild-solution class.) These three hypotheses are exactly the ones used in standard mild/Picard proofs (for example take X=HsX=H^sX=Hs, s>3/2s>3/2s>3/2, Y=Hs−1Y=H^{s-1}Y=Hs−1, then α=1/2\alpha=1/2α=1/2 and (H2) holds). ==== Under (H1)–(H3) show that for any u∈C([0,T];X)u\in C([0,T];X)u∈C([0,T];X) and any fixed t∈(0,T]t\in(0,T]t∈(0,T] the XXX-valued function ==== Φu(s):=eν(t−s)Δ B(u(s),u(s)),s∈[0,t],\Phi_u(s) := e^{\nu (t-s)\Delta}\,B\big(u(s),u(s)\big),\qquad s\in[0,t],Φu(s):=eν(t−s)ΔB(u(s),u(s)),s∈[0,t], is Bochner integrable on [0,t][0,t][0,t] and therefore the Duhamel term I(t):=∫0tΦu(s) ds\mathcal{I}(t):=\int_0^t \Phi_u(s)\,dsI(t):=∫0tΦu(s)ds exists in XXX. Moreover t↦I(t)t\mapsto \mathcal I(t)t↦I(t) is continuous in XXX and hence the mild formula defines an element of C([0,T];X)C([0,T];X)C([0,T];X). ==== Because u∈C([0,T];X)u\in C([0,T];X)u∈C([0,T];X), the real function m:=sup0≤s≤t∥u(s)∥Xm:=\sup_{0\le s\le t}\|u(s)\|_Xm:=sup0≤s≤t∥u(s)∥X is finite. ==== Using (H2) and (H1) we have for each s∈[0,t)s\in[0,t)s∈[0,t) ∥Φu(s)∥X=∥eν(t−s)Δ B(u(s),u(s))∥X≤∥eν(t−s)Δ∥X←Y ∥B(u(s),u(s))∥Y≤CG (t−s)−α CB ∥u(s)∥X2≤C (t−s)−α,C:=CGCB m2.\begin{aligned} \|\Phi_u(s)\|_X &= \big\|e^{\nu (t-s)\Delta} \, B(u(s),u(s))\big\|_X\\[4pt] &\le \|e^{\nu (t-s)\Delta}\|_{X\leftarrow Y}\,\|B(u(s),u(s))\|_Y\\[4pt] &\le C_G\,(t-s)^{-\alpha}\,C_B\,\|u(s)\|_X^2\\[4pt] &\le C\, (t-s)^{-\alpha},\qquad C:=C_G C_B\, m^2. \end{aligned}∥Φu(s)∥X=eν(t−s)ΔB(u(s),u(s))X≤∥eν(t−s)Δ∥X←Y∥B(u(s),u(s))∥Y≤CG(t−s)−αCB∥u(s)∥X2≤C(t−s)−α,C:=CGCBm2. Because α<1\alpha<1α<1 by hypothesis, the function s↦(t−s)−αs\mapsto (t-s)^{-\alpha}s↦(t−s)−α is integrable on [0,t][0,t][0,t]. Therefore Φu∈L1([0,t];X)\Phi_u\in L^1([0,t];X)Φu∈L1([0,t];X), so the Bochner integral I(t)\mathcal I(t)I(t) exists as an element of XXX. ==== Fix t∈(0,T]t\in(0,T]t∈(0,T]. Write ==== I(t)=∫0teν(t−s)ΔB(u(s),u(s)) ds.\mathcal I(t) = \int_0^t e^{\nu (t-s)\Delta} B(u(s),u(s))\,ds.I(t)=∫0teν(t−s)ΔB(u(s),u(s))ds. Standard dominated-convergence arguments for Bochner integrals give continuity of t↦I(t)t\mapsto\mathcal I(t)t↦I(t) provided: * the integrand is strongly measurable in sss, (true here because u(s)u(s)u(s) is continuous into XXX and the composition with bounded linear maps is continuous), and * there is an integrable dominating function independent of small perturbations of ttt. The estimate above provides such a uniform integrable bound ∝(t−s)−α\propto(t-s)^{-\alpha}∝(t−s)−α when ttt ranges over a compact subinterval away from 000. One checks the contribution near the moving endpoint is small uniformly. A standard calculation (write difference I(t+h)−I(t)\mathcal I(t+h)-\mathcal I(t)I(t+h)−I(t) and split the integral) shows I(⋅)\mathcal I(\cdot)I(⋅) is continuous on (0,T](0,T](0,T]; continuity at t=0t=0t=0 follows from small-time smoothing estimates and smallness of the integral on small intervals. Therefore I∈C([0,T];X)\mathcal I\in C([0,T];X)I∈C([0,T];X). ==== Define the mild operator ==== (Tu)(t):=eνtΔu0−∫0teν(t−s)ΔB(u(s),u(s)) ds.(\mathcal T u)(t) := e^{\nu t\Delta}u_0 - \int_0^t e^{\nu (t-s)\Delta} B(u(s),u(s))\,ds.(Tu)(t):=eνtΔu0−∫0teν(t−s)ΔB(u(s),u(s))ds. From the previous steps we conclude that for every u∈C([0,T];X)u\in C([0,T];X)u∈C([0,T];X) the right-hand side is an element of C([0,T];X)C([0,T];X)C([0,T];X). Hence T\mathcal TT maps C([0,T];X)C([0,T];X)C([0,T];X) into itself; i.e. the Duhamel (mild) expression is well-defined in this Banach setting. To run Picard you further show T\mathcal TT is a contraction on a small time interval (use the same convolution estimate with the factor t1−αt^{1-\alpha}t1−α coming from the time integral); that gives existence and uniqueness of a fixed point in C([0,T];X)C([0,T];X)C([0,T];X). ==== Take X=Hs(R3)X=H^s(\mathbb{R}^3)X=Hs(R3) with s>3/2s>3/2s>3/2, Y=Hs−1Y=H^{s-1}Y=Hs−1. Then: ==== * The heat semigroup bound (H1) holds with α=1/2\alpha=1/2α=1/2: ∥eντΔ∥Hs←Hs−1≲τ−1/2\|e^{\nu \tau\Delta}\|_{H^s\leftarrow H^{s-1}}\lesssim \tau^{-1/2}∥eντΔ∥Hs←Hs−1≲τ−1/2. * The product estimate (H2) holds because HsH^sHs is an algebra for s>3/2s>3/2s>3/2: ∥u⊗v∥Hs≲∥u∥Hs∥v∥Hs\|u\otimes v\|_{H^{s}} \lesssim \|u\|_{H^s}\|v\|_{H^s}∥u⊗v∥Hs≲∥u∥Hs∥v∥Hs, so ∥∇⋅(u⊗v)∥Hs−1≲∥u∥Hs∥v∥Hs\|\nabla\cdot(u\otimes v)\|_{H^{s-1}}\lesssim\|u\|_{H^s}\|v\|_{H^s}∥∇⋅(u⊗v)∥Hs−1≲∥u∥Hs∥v∥Hs. Plugging these into the argument above yields the familiar integrability factor (t−s)−1/2(t-s)^{-1/2}(t−s)−1/2, integrable on [0,t][0,t][0,t]. This is the standard textbook setting. ==== If your space is the nonnormed extended algebra EEE and you want to assert the mild expression exists there, you must add precise axioms for EEE. At minimum you need: ==== * A topology (or net/sequence notion) and a Banach-type seminorm ∥⋅∥X\|\cdot\|_X∥⋅∥X on the subspace where the Picard iterates live, or an explicit statement that the semigroup operators eνtΔe^{\nu t\Delta}eνtΔ act and satisfy a bound of the form in (H1). * Closure of EEE under multiplication with a bilinear estimate like (H2). * The ability to form Bochner (or primitive-based) integrals in EEE and that your linear limit LLL commutes with these integrals. Without explicit axioms of this type you cannot rigorously show existence of the Bochner integral in EEE; the claim “the mild equation is well-defined in the extended space” is therefore conditional on supplying those axioms. ==== 1. Find a norm or seminorm ∥⋅∥X\|\cdot\|_X∥⋅∥X making the Picard iterates elements of C([0,T];X)C([0,T];X)C([0,T];X). ==== # Prove product estimate ∥B(u,v)∥Y≲∥u∥X∥v∥X\|B(u,v)\|_{Y}\lesssim\|u\|_X\|v\|_X∥B(u,v)∥Y≲∥u∥X∥v∥X and semigroup bound ∥eντΔ∥X←Y≲τ−α\|e^{\nu\tau\Delta}\|_{X\leftarrow Y}\lesssim\tau^{-\alpha}∥eντΔ∥X←Y≲τ−α with α<1\alpha<1α<1. # Apply the estimate ∥eν(t−s)ΔB(u,u)(s)∥X≲(t−s)−α∥u(s)∥X2\|e^{\nu(t-s)\Delta}B(u,u)(s)\|_X\lesssim (t-s)^{-\alpha}\|u(s)\|_X^2∥eν(t−s)ΔB(u,u)(s)∥X≲(t−s)−α∥u(s)∥X2 to dominate and integrate. # Conclude Bochner integrability and continuity in ttt. If you want, I can now (a) instantiate the whole argument with explicit constants in the HsH^sHs case, or (b) write down the minimal axioms for an extended algebra EEE that would make the above proof go through and examine whether any known generalized-function framework satisfies them. Which do you prefer?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)