Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below is an appendable LaTeX section giving a sufficient cluster certificate theorem and a fully detailed proof that it… === Below is an appendable LaTeX section giving a sufficient cluster certificate theorem and a fully detailed proof that it implies (i) the global optimizer is supported on the cluster and (ii) the margin satisfies γ=Ω(ρ)\gamma=\Omega(\sqrt{\rho})γ=Ω(ρ) under a simple outside-degree condition. It is written for the ℓ1\ell_1ℓ1-regularized PageRank objective (3) in your COLT’22 open-problem note. open-problem-fountoulakis22a <syntaxhighlight lang="latex">% ============================================================ \section{A primal--dual cluster certificate implying a $\sqrt{\rho}$-scale margin} \label{sec:cluster_certificate_margin} This section provides a \emph{sufficient} condition ensuring the strict-complementarity margin \[ \gamma := \min_{i\in I^\star}\left(\lambda_i - |\nabla f(x^\star)_i|\right) \] is bounded below by a quantity of order $\sqrt{\rho}$ (in the PageRank specialization). The result is stated and proved in a general composite form and then specialized to the $\ell_1$-regularized PageRank objective~(3). \subsection{General composite model and subgradients} Consider the composite optimization problem \begin{equation}\label{eq:comp_model_cert} \min_{x\in\mathbb{R}^n} F(x) := f(x) + g(x), \qquad g(x) := \sum_{i=1}^n \lambda_i |x_i|, \quad \lambda_i>0. \end{equation} Assume $f$ is convex and differentiable. (In our PageRank case, $f$ is quadratic and strongly convex.) We recall the coordinatewise subdifferential of the weighted $\ell_1$ term. \begin{lemma}[Subdifferential of weighted $\ell_1$]\label{lem:subdiff_l1_weighted} Let $g(x)=\sum_{i=1}^n \lambda_i |x_i|$ with $\lambda_i>0$. Then \[ \partial g(x) = \left\{z\in\mathbb{R}^n:\; z_i= \begin{cases} \lambda_i\,\mathrm{sign}(x_i), & x_i\neq 0,\\[2mm] \theta_i,\;\; \theta_i\in[-\lambda_i,\lambda_i], & x_i=0, \end{cases} \;\; \forall i \right\}. \] \end{lemma} \begin{proof} Since $g$ is separable, $g(x)=\sum_i g_i(x_i)$ with $g_i(t)=\lambda_i|t|$. The subdifferential of $|t|$ is $\partial |t|=\{\mathrm{sign}(t)\}$ for $t\neq 0$ and $\partial |0|=[-1,1]$. Thus $\partial g_i(t)=\lambda_i\partial|t|$, yielding $\partial g_i(t)=\{\lambda_i\mathrm{sign}(t)\}$ for $t\neq 0$ and $\partial g_i(0)=[-\lambda_i,\lambda_i]$. Taking the Cartesian product across coordinates gives the stated formula. \end{proof} We also recall the standard first-order optimality characterization for convex minimization. \begin{lemma}[First-order optimality for convex composite problems]\label{lem:optimality_convex} Assume $f$ is convex and differentiable and $g$ is convex. Then a point $\bar x$ minimizes $F=f+g$ if and only if \[ 0 \in \partial F(\bar x). \] Moreover, since $f$ is differentiable, $\partial f(\bar x)=\{\nabla f(\bar x)\}$ and hence \[ \partial F(\bar x)=\nabla f(\bar x)+\partial g(\bar x), \] so $\bar x$ is a minimizer if and only if there exists $z\in\partial g(\bar x)$ such that \begin{equation}\label{eq:KKT_general} \nabla f(\bar x)+z=0. \end{equation} \end{lemma} \begin{proof} For any proper closed convex function $h$, a point $\bar x$ minimizes $h$ if and only if $0\in\partial h(\bar x)$. Apply this to $h=F$. Next, since $f$ is convex and differentiable, $\partial f(\bar x)=\{\nabla f(\bar x)\}$. A standard subgradient sum rule gives $\partial (f+g)(\bar x)=\partial f(\bar x)+\partial g(\bar x)$, hence $\partial F(\bar x)=\nabla f(\bar x)+\partial g(\bar x)$. Therefore $0\in\partial F(\bar x)$ is equivalent to the existence of $z\in\partial g(\bar x)$ satisfying \eqref{eq:KKT_general}. \end{proof} \subsection{A cluster (support) certificate and a margin lower bound} Let $C\subseteq\{1,\dots,n\}$ be a candidate ``cluster'' and let $\bar C:=\{1,\dots,n\}\setminus C$. For vectors we use the block notation $x=(x_C,x_{\bar C})$. \begin{theorem}[Primal--dual cluster certificate $\Rightarrow$ support containment and margin]\label{thm:cluster_certificate} Consider \eqref{eq:comp_model_cert} with convex differentiable $f$ and weights $\lambda_i>0$. Assume in addition that $F=f+g$ is $\mu$-strongly convex for some $\mu>0$, so the minimizer $x^\star$ is unique. Fix a set $C\subseteq\{1,\dots,n\}$ and suppose there exist: \begin{itemize} \item a vector $\hat x\in\mathbb{R}^n$ with \emph{exact} support $\,\supp(\hat x)=C$ (i.e.\ $\hat x_C$ has no zero entries and $\hat x_{\bar C}=0$), and \item a parameter $\eta\in(0,1)$, \end{itemize} such that the following two conditions hold: \begin{enumerate} \item[\textbf{(i)}] \textbf{Stationarity on $C$.} For all $i\in C$, \begin{equation}\label{eq:stationarity_C} \nabla f(\hat x)_i + \lambda_i\,\mathrm{sign}(\hat x_i)=0. \end{equation} \item[\textbf{(ii)}] \textbf{Strict dual feasibility on $\bar C$.} For all $i\in \bar C$, \begin{equation}\label{eq:strict_dual_feas} |\nabla f(\hat x)_i| \le (1-\eta)\lambda_i. \end{equation} \end{enumerate} Then: \begin{enumerate} \item[(a)] $\hat x$ is the unique global minimizer: $\hat x=x^\star$. Hence $\supp(x^\star)=C$. \item[(b)] The strict-complementarity margin satisfies \begin{equation}\label{eq:gamma_lower_bound_cert} \gamma := \min_{i\in I^\star}\bigl(\lambda_i-|\nabla f(x^\star)_i|\bigr) \;\ge\; \eta\,\min_{i\in \bar C}\lambda_i. \end{equation} \end{enumerate} \end{theorem} \begin{proof} \paragraph{Step 1: Construct an explicit subgradient $z\in\partial g(\hat x)$.} Define $z\in\mathbb{R}^n$ coordinatewise by \[ z_i := \begin{cases} \lambda_i\,\mathrm{sign}(\hat x_i), & i\in C,\\[1mm] -\nabla f(\hat x)_i, & i\in\bar C. \end{cases} \] We claim $z\in\partial g(\hat x)$. Indeed, since $\supp(\hat x)=C$, we have $\hat x_i\neq 0$ for all $i\in C$ and $\hat x_i=0$ for all $i\in\bar C$. By Lemma~\ref{lem:subdiff_l1_weighted}: \begin{itemize} \item For $i\in C$ (nonzero coordinates), the subdifferential requires $z_i=\lambda_i\mathrm{sign}(\hat x_i)$, which holds by definition. \item For $i\in\bar C$ (zero coordinates), the subdifferential requires $z_i\in[-\lambda_i,\lambda_i]$. But by \eqref{eq:strict_dual_feas} and our definition, $|z_i|=|\nabla f(\hat x)_i|\le (1-\eta)\lambda_i<\lambda_i$, so indeed $z_i\in[-\lambda_i,\lambda_i]$. \end{itemize} Thus $z\in\partial g(\hat x)$. \paragraph{Step 2: Verify the KKT condition $\nabla f(\hat x)+z=0$.} We check this coordinatewise. \begin{itemize} \item For $i\in C$, $z_i=\lambda_i\mathrm{sign}(\hat x_i)$ and \eqref{eq:stationarity_C} gives $\nabla f(\hat x)_i+z_i=0$. \item For $i\in\bar C$, we defined $z_i=-\nabla f(\hat x)_i$, hence $\nabla f(\hat x)_i+z_i=0$ holds trivially. \end{itemize} Therefore $\nabla f(\hat x)+z=0$ with $z\in\partial g(\hat x)$. \paragraph{Step 3: Conclude $\hat x$ is a global minimizer.} By Lemma~\ref{lem:optimality_convex}, the existence of $z\in\partial g(\hat x)$ such that $\nabla f(\hat x)+z=0$ implies $0\in\partial F(\hat x)$ and hence $\hat x$ minimizes $F$. \paragraph{Step 4: Conclude uniqueness and identify the support.} By assumption, $F$ is $\mu$-strongly convex with $\mu>0$, hence the minimizer is unique. Since $\hat x$ is a minimizer, it must equal the unique minimizer: $\hat x=x^\star$. In particular, $\supp(x^\star)=\supp(\hat x)=C$ and thus $I^\star=\bar C$. \paragraph{Step 5: Lower bound the margin.} Since $I^\star=\bar C$, we can write \[ \gamma = \min_{i\in\bar C}\left(\lambda_i-|\nabla f(x^\star)_i|\right) = \min_{i\in\bar C}\left(\lambda_i-|\nabla f(\hat x)_i|\right), \] where the equality uses $x^\star=\hat x$. Using \eqref{eq:strict_dual_feas}, for each $i\in\bar C$ we have \[ \lambda_i-|\nabla f(\hat x)_i| \ge \lambda_i-(1-\eta)\lambda_i = \eta\lambda_i. \] Taking the minimum over $i\in\bar C$ yields \eqref{eq:gamma_lower_bound_cert}. \end{proof} \subsection{Specialization to $\ell_1$-regularized PageRank and a $\sqrt{\rho}$ condition} We now specialize Theorem~\ref{thm:cluster_certificate} to the $\ell_1$-regularized PageRank objective~(3): \[ F(x)= f(x)+g(x),\qquad f(x)=\frac12 x^\top Qx-\alpha x^\top D^{-1/2}s,\qquad g(x)=\rho\alpha\|D^{1/2}x\|_1. \] In this case $g(x)=\sum_{i=1}^n \lambda_i|x_i|$ with weights \begin{equation}\label{eq:lambda_ppr} \lambda_i=\rho\alpha\sqrt{d_i}. \end{equation} \begin{corollary}[$\gamma=\Omega(\sqrt{\rho})$ under a degree condition]\label{cor:gamma_sqrt_rho} Assume the PageRank objective~(3) and suppose the hypotheses of Theorem~\ref{thm:cluster_certificate} hold for some set $C$ and slack $\eta\in(0,1)$. Then \[ \gamma \ge \eta\,\min_{i\in\bar C}\lambda_i = \eta\,\rho\alpha\,\min_{i\in\bar C}\sqrt{d_i}. \] In particular, if the complement degrees satisfy \begin{equation}\label{eq:degree_condition_out} \min_{i\in\bar C} d_i \;\ge\; \frac{c_0}{\alpha^2\rho} \qquad\text{for some constant }c_0>0, \end{equation} then \begin{equation}\label{eq:gamma_Omega_sqrt_rho} \gamma \;\ge\; \eta\,\sqrt{c_0}\,\sqrt{\rho}. \end{equation} \end{corollary} \begin{proof} The first inequality follows immediately by substituting \eqref{eq:lambda_ppr} into \eqref{eq:gamma_lower_bound_cert}. If additionally \eqref{eq:degree_condition_out} holds, then for all $i\in\bar C$, \[ \lambda_i=\rho\alpha\sqrt{d_i}\ge \rho\alpha\sqrt{\frac{c_0}{\alpha^2\rho}}=\sqrt{c_0}\,\sqrt{\rho}. \] Taking the minimum over $i\in\bar C$ and multiplying by $\eta$ yields \eqref{eq:gamma_Omega_sqrt_rho}. \end{proof} \begin{remark}[Relation to conductance and internal connectivity] Theorem~\ref{thm:cluster_certificate} isolates the core requirement: a \emph{strict dual feasibility} inequality \eqref{eq:strict_dual_feas} on $\bar C$. In the PageRank setting, $\nabla f(\hat x)=Q\hat x-\alpha D^{-1/2}s$ and the block $Q_{\bar C C}$ only involves edges crossing the cut $(C,\bar C)$. Thus, when $C$ has small boundary (low conductance) and is internally well-conditioned (so the restricted solution on $C$ does not become too large), one expects \eqref{eq:strict_dual_feas} to hold with a nontrivial slack $\eta$. The degree condition \eqref{eq:degree_condition_out} is a simple sufficient way to ensure $\min_{i\in\bar C}\lambda_i=\Theta(\sqrt{\rho})$, which is necessary for $\gamma$ to be of order $\sqrt{\rho}$. \end{remark} % ============================================================ </syntaxhighlight>
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)