Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== ### ==== Expand the scalar field on spherical harmonics (on the shell at r0r_0r0β): Ο(t,ΞΈ,Ο)β β=β βββ=0ββm=βββΞ¦βm(t)β βYβm(ΞΈ,Ο).\phi(t,\theta,\varphi) \;=\; \sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell} \Phi_{\ell m}(t)\;Y_{\ell m}(\theta,\varphi).Ο(t,ΞΈ,Ο)=β=0βββm=βββββΞ¦βmβ(t)Yβmβ(ΞΈ,Ο). Because ΞΞ©Yβm=ββ(β+1)Yβm\Delta_{\Omega}Y_{\ell m}=-\ell(\ell+1)Y_{\ell m}ΞΞ©βYβmβ=ββ(β+1)Yβmβ, the shell EOM (no A for the moment) becomes for each mode: 1c2Φ¨βm(t)+β(β+1)r02βΞ¦βm(t)+ms2βΞ¦βm(t)=0.\frac{1}{c^{2}}\ddot{\Phi}_{\ell m}(t) + \frac{\ell(\ell+1)}{r_0^{2}}\,\Phi_{\ell m}(t) + m_s^{2}\,\Phi_{\ell m}(t)=0.c21βΦ¨βmβ(t)+r02ββ(β+1)βΞ¦βmβ(t)+ms2βΞ¦βmβ(t)=0. So the free (uncoupled) mode frequency is β βΟβ2β β=β βc2[β(β+1)r02β β+β βms2].β β\boxed{\; \omega_{\ell}^{2} \;=\; c^{2}\left[\frac{\ell(\ell+1)}{r_0^{2}} \;+\; m_s^{2}\right]. \;}Οβ2β=c2[r02ββ(β+1)β+ms2β].β This is a clean and important result: modes are indexed by β\ellβ, the geometry sets the β(β+1)/r02\ell(\ell+1)/r_0^2β(β+1)/r02β term, and ms2m_s^2ms2β is an effective shell mass. ===== Start from the shell kinetic contribution ===== Skin=βββ£β«ββ£dtβ βr02ββ£β«dΞ©β β12c2ββ£βtΟβ£2.S_{\text{kin}}=\hbar\!\int\!dt\; r_{0}^{2}\!\int d\Omega\; \frac{1}{2c^{2}}\,|\partial_t\phi|^{2}.Skinβ=ββ«dtr02ββ«dΞ©2c21ββ£βtβΟβ£2. Insert the expansion and use the orthonormality of YβmY_{\ell m}Yβmβ. The kinetic term becomes (sum over modes) Skin=βββ£β«ββ£dtβ βββmβ βr022c2β ββ£Ξ¦Λβmβ£2.S_{\text{kin}} = \hbar\!\int\!dt\;\sum_{\ell m}\; \frac{r_0^{2}}{2c^{2}}\;|\dot\Phi_{\ell m}|^{2}.Skinβ=ββ«dtβmββ2c2r02βββ£Ξ¦Λβmββ£2. Thus define the effective modal mass: Meffβ β=β βββr02c2.M_{\rm eff} \;=\; \hbar\,\frac{r_0^{2}}{c^{2}}.Meffβ=βc2r02ββ. Canonical momentum for each mode: Οβm(t)β β=β ββLβΞ¦Λβmβ β=β βMeffβ βΞ¦Λβmβ(t).\pi_{\ell m}(t) \;=\; \frac{\partial \mathcal{L}}{\partial \dot\Phi_{\ell m}} \;=\; M_{\rm eff}\; \dot\Phi_{\ell m}^{*}(t).Οβmβ(t)=βΞ¦ΛβmββLβ=MeffβΞ¦Λβmββ(t). (We keep β\hbarβ explicit in MeffM_{\rm eff}Meffβ.) ===== Each mode is a harmonic oscillator: ===== Hβmβ β=β ββ£Οβmβ£22Meffβ β+β β12MeffβΟβ2ββ£Ξ¦βmβ£2.H_{\ell m} \;=\; \frac{|\pi_{\ell m}|^{2}}{2M_{\rm eff}} \;+\; \frac{1}{2}M_{\rm eff}\,\omega_{\ell}^{2}\,|\Phi_{\ell m}|^{2}.Hβmβ=2Meffββ£Οβmββ£2β+21βMeffβΟβ2ββ£Ξ¦βmββ£2. Quantize by canonical commutators (on the shell): [Ξ¦βm,Οββ²mβ²]β β=β βiββΞ΄βββ²Ξ΄mmβ².[\Phi_{\ell m},\pi_{\ell' m'}] \;=\; i\hbar\,\delta_{\ell\ell'}\delta_{mm'}.[Ξ¦βmβ,Οββ²mβ²β]=iβΞ΄βββ²βΞ΄mmβ²β. Define annihilation/creation operators aβma_{\ell m}aβmβ, aβmβ a_{\ell m}^\daggeraβmβ β with the usual normalization so the quantized Hamiltonian is β βHshellβ β=β βββ,mβΟβ(aβmβ aβm+12).β β\boxed{\; H_{\rm shell} \;=\; \sum_{\ell,m} \hbar\omega_{\ell}\left(a_{\ell m}^\dagger a_{\ell m} + \tfrac12\right). \;}Hshellβ=β,mβββΟββ(aβmβ βaβmβ+21β).β Important: zero-point energy per mode is 12βΟβ\tfrac12\hbar\omega_\ell21ββΟββ. Note β\hbarβ here is h/2Οh/2\pih/2Ο, explicitly. ===== Minimal coupling replaced time/angle derivatives by covariant ones: ===== βtΞ¦βmβ ββΆβ ββtΞ¦βm+iqAt(βm)(t),\partial_t\Phi_{\ell m}\;\longrightarrow\; \partial_t\Phi_{\ell m} + i q A_t^{(\ell m)}(t),βtβΞ¦βmββΆβtβΞ¦βmβ+iqAt(βm)β(t), and similarly for angular derivatives. Expanding to leading order in AΞΌA_\muAΞΌβ yields an interaction Hamiltonian of the dipole/multipole form: Hintβ β=β βqββm[βOβm(t)β βAt(βm)(t)β β+β βPβm(t)β AΞ©(βm)(t)]+O(q2A2).H_{\rm int} \;=\; q \sum_{\ell m} \left[\,\mathcal{O}_{\ell m}(t)\;A_t^{(\ell m)}(t) \;+\; \mathcal{P}_{\ell m}(t)\cdot A_{\Omega}^{(\ell m)}(t) \right] + \mathcal{O}(q^2 A^2).Hintβ=qβmββ[Oβmβ(t)At(βm)β(t)+Pβmβ(t)β AΞ©(βm)β(t)]+O(q2A2). Here Oβm\mathcal{O}_{\ell m}Oβmβ, Pβm\mathcal{P}_{\ell m}Pβmβ are mode operators constructed from Ξ¦βm\Phi_{\ell m}Ξ¦βmβ and Οβm\pi_{\ell m}Οβmβ (they generalize charge and multipole moments). At quadratic order the interaction also produces a shift of the eigenfrequencies (Stark-like or diamagnetic terms) of order q2β¨A2β©/Meffq^2\langle A^2\rangle/M_{\rm eff}q2β¨A2β©/Meffβ. ===== - A shell charge multipole Οβm(t)\sigma_{\ell m}(t)Οβmβ(t) (equal to the shell JtJ^tJt expanded in YβmY_{\ell m}Yβmβ) produces an external potential outside that scales like rβ(β+1)r^{-(\ell+1)}rβ(β+1) and inside like rβr^\ellrβ. That gives the external EM field that the shell mode radiates into. ===== * Thus radiation and damping of shell modes can be obtained by coupling the shell oscillators to the continuum of EM modes (standard open-system treatment): shell modes will have decay widths Ξβ\Gamma_{\ell}Ξββ into EM radiation determined by the coupling strength qqq and the multipole order β\ellβ.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)