Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== ### ==== * The electron’s probability shell sits at radius r=r0r=r_0r=r0. We model the shell with a complex scalar field ϕ(t,θ,φ)\phi(t,\theta,\varphi)ϕ(t,θ,φ) living on the 2-sphere S2(r0)S^2(r_0)S2(r0). * Electromagnetic field Aμ(x)A_\mu(x)Aμ(x) lives in the 3-D space (bulk). The shell interacts with the tangential components At,Aθ,AφA_t,A_\theta,A_\varphiAt,Aθ,Aφ evaluated at r=r0r=r_0r=r0. * We keep the quantum of action explicit: ℏ≡h2π\displaystyle \hbar\equiv\frac{h}{2\pi}ℏ≡2πh. * Units: I will write equations in a mixed but transparent way — where necessary I remind how to add SI factors (ε₀, μ₀, c). The structure is valid in natural units (c = 1) and can be converted. ===== Write the total action as ===== S=Sbulk EM[A] + Sshell[ϕ,A∣r=r0],S = S_{\rm bulk\,EM}[A] \;+\; S_{\rm shell}[\phi,A|_{r=r_0}],S=SbulkEM[A]+Sshell[ϕ,A∣r=r0], with the surface action Sshell = ℏ∫dt ∫S2(r0) dΩ r02 Lshell(ϕ,Dμϕ;Aμ)S_{\rm shell} \;=\; \hbar \int dt \; \int_{S^2(r_0)} \! d\Omega\, r_0^2 \; \mathcal{L}_{\rm shell}(\phi,D_\mu\phi;A_\mu)Sshell=ℏ∫dt∫S2(r0)dΩr02Lshell(ϕ,Dμϕ;Aμ) where dΩ=sinθ dθ dφd\Omega=\sin\theta\,d\theta\,d\varphidΩ=sinθdθdφ, and the covariant derivative (minimal coupling) on the shell is Dtϕ=∂tϕ+iqAt(t,θ,φ),Daϕ=∇aϕ+iqAa(t,θ,φ),D_t\phi = \partial_t\phi + i q A_t(t,\theta,\varphi),\qquad D_a\phi = \nabla_a\phi + i q A_a(t,\theta,\varphi),Dtϕ=∂tϕ+iqAt(t,θ,φ),Daϕ=∇aϕ+iqAa(t,θ,φ), with a∈{θ,φ}a\in\{\theta,\varphi\}a∈{θ,φ} the tangential indices and ∇a\nabla_a∇a the covariant derivative on the sphere. The factor ℏ\hbarℏ outside encodes the action quantum visibly. A convenient choice for the shell Lagrangian density is Lshell=12c2 ∣Dtϕ∣2−12r02 ∣∇ Ωϕ−iqr0AΩ ϕ∣2−12ms2∣ϕ∣2 + ⋯\mathcal{L}_{\rm shell} = \frac{1}{2c^{2}}\;|D_t\phi|^{2} * \frac{1}{2r_0^{2}}\;| \nabla_{\!\Omega}\phi - i q r_0 A_{\Omega}\,\phi |^{2} * \frac{1}{2} m_s^{2} |\phi|^{2} \;+\; \cdotsLshell=2c21∣Dtϕ∣2−2r021∣∇Ωϕ−iqr0AΩϕ∣2−21ms2∣ϕ∣2+⋯ where ∇ Ω\nabla_{\!\Omega}∇Ω is the angular gradient and AΩA_{\Omega}AΩ denotes the tangential components Aθ,AφA_\theta,A_\varphiAθ,Aφ. msm_sms is an effective shell mass parameter (from a quadratic potential) controlling how easily the shell field localizes. : ===== Vary SshellS_{\rm shell}Sshell with respect to ϕ∗\phi^*ϕ∗ to get the shell EOM (local on the 2-sphere): ===== 1c2 DtDtϕ−1r02 ΔΩϕ+ms2 ϕ + (terms from AΩ) = 0\frac{1}{c^2}\,D_t D_t \phi - \frac{1}{r_0^{2}}\;\Delta_{\Omega}\phi + m_s^{2}\,\phi \;+\; (\text{terms from }A_\Omega) \;=\; 0c21DtDtϕ−r021ΔΩϕ+ms2ϕ+(terms from AΩ)=0 where ΔΩ\Delta_{\Omega}ΔΩ is the Laplace–Beltrami operator on the unit sphere and the AΩA_\OmegaAΩ terms are the usual minimal-coupling contributions. This is the wave/oscillator equation for modes on the spherical shell. ===== The bulk EM Lagrangian is the usual ===== LEM=−14μ0FμνFμν,Fμν=∂μAν−∂νAμ.\mathcal{L}_{\rm EM}=-\frac{1}{4\mu_0}F^{\mu\nu}F_{\mu\nu}, \qquad F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu.LEM=−4μ01FμνFμν,Fμν=∂μAν−∂νAμ. Varying the total action w.r.t. AμA_\muAμ gives Maxwell’s equations in the bulk with a surface current contribution from the shell: ∂νFνμ(x) = μ0 Jshellμ(t,θ,φ) δ(r−r0)\partial_\nu F^{\nu\mu}(x) \;=\; \mu_0\, J^\mu_{\rm shell}(t,\theta,\varphi)\; \delta(r-r_0)∂νFνμ(x)=μ0Jshellμ(t,θ,φ)δ(r−r0) where the shell current 4-vector (localized at r0r_0r0) is Jshellμ(t,θ,φ) = ℏ iq [ ϕ∗ Dμϕ − ϕ (Dμϕ)∗ ]∣r=r0 \boxed{\; J^\mu_{\rm shell}(t,\theta,\varphi) \;=\; \hbar \; i q \; \big[\,\phi^''\,D^\mu\phi \;-\; \phi\, (D^\mu\phi)^''\,\big]\Big|_{r=r_0} \;}Jshellμ(t,θ,φ)=ℏiq[ϕ∗Dμϕ−ϕ(Dμϕ)∗]r=r0 Interpretation: JshellμJ^\mu_{\rm shell}Jshellμ is nonzero only on the sphere; its timelike component is the surface charge density and tangential components give the surface current density. : ===== Integrate Maxwell’s equations across the thin shell at r0r_0r0. Standard results (SI units) give: ===== Gauss law (radial electric jump): ε0 (Erout−Erin) = σ(θ,φ,t)\varepsilon_{0}\,\big( E_r^{\text{out}} - E_r^{\text{in}} \big) \;=\; \sigma(\theta,\varphi,t)ε0(Erout−Erin)=σ(θ,φ,t) where the surface charge density is σ(θ,φ,t) = Jshellt(t,θ,φ)\sigma(\theta,\varphi,t) \;=\; J^t_{\rm shell}(t,\theta,\varphi)σ(θ,φ,t)=Jshellt(t,θ,φ) (modulo the ccc factor if you keep four-current normalization Jμ=(cρ,J)J^\mu=(c\rho,\mathbf{J})Jμ=(cρ,J)). Ampère / tangential magnetic conditions (surface current): r^×(Hout−Hin) = K(θ,φ,t)\hat r \times \big( \mathbf{H}^{\text{out}} - \mathbf{H}^{\text{in}} \big) \;=\; \mathbf{K}(\theta,\varphi,t)r^×(Hout−Hin)=K(θ,φ,t) where the surface current K\mathbf{K}K (tangential) is given by the spatial components of JshellμJ^\mu_{\rm shell}Jshellμ restricted to the sphere. So localized shell fields produce discontinuities in the radial/tangential components of E and H consistent with the surface charge and current computed from ϕ\phiϕ. ===== Expand the surface charge density in spherical harmonics: ===== σ(θ,φ,t) = ∑ℓ,mσℓm(t) Yℓm(θ,φ).\sigma(\theta,\varphi,t) \;=\; \sum_{\ell,m} \sigma_{\ell m}(t)\, Y_{\ell m}(\theta,\varphi).σ(θ,φ,t)=ℓ,m∑σℓm(t)Yℓm(θ,φ). Each σℓm\sigma_{\ell m}σℓm produces outside electromagnetic potentials that fall like r−(ℓ+1)r^{-(\ell+1)}r−(ℓ+1) (multipole fields). Thus a given shell mode (ℓ,m)(\ell,m)(ℓ,m) will preferentially excite external EM multipoles of order ℓ\ellℓ. This is the mechanism that couples shell oscillation modes to radiation and external fields.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)