Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Let s>3/2s>3/2s>3/2. Suppose ===== u∈C([0,T];Hs(R3)).u\in C([0,T];H^{s}(\mathbb{R}^3)).u∈C([0,T];Hs(R3)). Define the bilinear map B(u,v)=P∇ ⋅(u⊗v)B(u,v)=P\nabla\!\cdot(u\otimes v)B(u,v)=P∇⋅(u⊗v). Then for every fixed t∈(0,T]t\in(0,T]t∈(0,T] the HsH^sHs-valued function Φ(s):=Gt−s B(u(s),u(s)),s∈[0,t],\Phi(s):=G_{t-s}\,B\big(u(s),u(s)\big),\qquad s\in[0,t],Φ(s):=Gt−sB(u(s),u(s)),s∈[0,t], is strongly measurable on [0,t][0,t][0,t] and belongs to L1([0,t];Hs(R3))L^1([0,t];H^s(\mathbb{R}^3))L1([0,t];Hs(R3)). Moreover there is a constant CCC (depending on ν,s\nu,sν,s) such that for a.e. s∈[0,t]s\in[0,t]s∈[0,t] ∥Φ(s)∥Hs≤C (t−s)−1/2 ∥u(s)∥Hs2.\|\Phi(s)\|_{H^s} \le C\,(t-s)^{-1/2}\,\|u(s)\|_{H^s}^2.∥Φ(s)∥Hs≤C(t−s)−1/2∥u(s)∥Hs2. In particular Φ\PhiΦ is Bochner-integrable on [0,t][0,t][0,t] since ∫0t(t−s)−1/2 ds<∞\int_0^t (t-s)^{-1/2}\,ds<\infty∫0t(t−s)−1/2ds<∞. ====== 1. Product estimate (algebra property). For s>3/2s>3/2s>3/2 we have the continuous product embedding Hs×Hs→HsH^s\times H^s\to H^sHs×Hs→Hs. Hence ====== ∥u(s)⊗u(s)∥Hs≤C1∥u(s)∥Hs2.\|u(s)\otimes u(s)\|_{H^s} \le C_1 \|u(s)\|_{H^s}^2.∥u(s)⊗u(s)∥Hs≤C1∥u(s)∥Hs2. Applying ∇ ⋅\nabla\!\cdot∇⋅ reduces regularity by one: ∥B(u,u)(s)∥Hs−1=∥P∇ ⋅(u⊗u)(s)∥Hs−1≤C2∥u(s)∥Hs2,\|B(u,u)(s)\|_{H^{s-1}} = \|P\nabla\!\cdot(u\otimes u)(s)\|_{H^{s-1}} \le C_2 \|u(s)\|_{H^s}^2,∥B(u,u)(s)∥Hs−1=∥P∇⋅(u⊗u)(s)∥Hs−1≤C2∥u(s)∥Hs2, because PPP is bounded on Sobolev spaces. # Heat-semigroup gain estimate. The heat semigroup satisfies the smoothing bound ∥Gτf∥Hs≤C3 τ−1/2 ∥f∥Hs−1,τ>0,\|G_\tau f\|_{H^{s}} \le C_3\,\tau^{-1/2}\,\|f\|_{H^{s-1}},\qquad \tau>0,∥Gτf∥Hs≤C3τ−1/2∥f∥Hs−1,τ>0, which is the r=1r=1r=1 case of the general estimate ∥Gτf∥Hs+r≤Cτ−r/2∥f∥Hs\|G_\tau f\|_{H^{s+r}}\le C\tau^{-r/2}\|f\|_{H^s}∥Gτf∥Hs+r≤Cτ−r/2∥f∥Hs. # Combine the two with τ=t−s\tau=t-sτ=t−s: ∥Φ(s)∥Hs=∥Gt−sB(u,u)(s)∥Hs≤C3(t−s)−1/2∥B(u,u)(s)∥Hs−1≤C (t−s)−1/2∥u(s)∥Hs2.\|\Phi(s)\|_{H^s} = \|G_{t-s} B(u,u)(s)\|_{H^s} \le C_3 (t-s)^{-1/2} \|B(u,u)(s)\|_{H^{s-1}} \le C\,(t-s)^{-1/2}\|u(s)\|_{H^s}^2.∥Φ(s)∥Hs=∥Gt−sB(u,u)(s)∥Hs≤C3(t−s)−1/2∥B(u,u)(s)∥Hs−1≤C(t−s)−1/2∥u(s)∥Hs2. # Since u∈C([0,T];Hs)u\in C([0,T];H^s)u∈C([0,T];Hs), the function s↦∥u(s)∥Hs2s\mapsto \|u(s)\|_{H^s}^2s↦∥u(s)∥Hs2 is bounded on [0,t][0,t][0,t]. Therefore the right-hand side is dominated by a constant times (t−s)−1/2(t-s)^{-1/2}(t−s)−1/2, which is integrable on [0,t][0,t][0,t]. This proves Bochner integrability. Strong measurability follows from continuity of the composition s↦B(u,u)(s)s\mapsto B(u,u)(s)s↦B(u,u)(s) into Hs−1H^{s-1}Hs−1 and continuity of the map s↦Gt−ss\mapsto G_{t-s}s↦Gt−s into bounded operators on Hs−1H^{s-1}Hs−1 for s<ts<ts<t; standard measurability results then imply Φ\PhiΦ is strongly measurable on [0,t][0,t][0,t]. ∎
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)