Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68f40a7c-717c-8000-8af6-a222789ef1d8
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Excellent — here’s the Windows-safe / UTF-8-clean version of your full script. === Excellent — here’s the Windows-safe / UTF-8-clean version of your full script. It includes the solid orange vertical sine projection that starts at the top of the spiral and descends smoothly through the cube. No special symbols, no fancy quotes — safe to save in ANSI or UTF-8. <syntaxhighlight lang="python"># GoldenEllipseSpiralCubeSLIDER_SINE_VERTICAL_SAFE.py === UTF-8 safe version (no special symbols) === import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Button, Slider from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection class GoldenEllipseSpiralCube: def __init__(self): self.fig = plt.figure(figsize=(14, 8)) self.ax = self.fig.add_subplot(121, projection='3d') self.ax_info = self.fig.add_subplot(122) self.ax_info.axis('off') # Constants self.phi = (1 + np.sqrt(5)) / 2 self.pyramid_angle = 51.84 # Cube vertices self.vertices = np.array([ [-1, -1, -1], [1, -1, -1], [1, 1, -1], [-1, 1, -1], [-1, -1, 1], [1, -1, 1], [1, 1, 1], [-1, 1, 1] ]) self.faces = [ [0, 1, 2, 3], [4, 5, 6, 7], [0, 1, 5, 4], [2, 3, 7, 6], [0, 3, 7, 4], [1, 2, 6, 5] ] self.face_colors = [ [1, 0, 0, 0.05], [0, 1, 0, 0.05], [0, 0, 1, 0.05], [1, 1, 0, 0.05], [1, 0, 1, 0.05], [0, 1, 1, 0.05] ] # Geometry self.spiral_points = self.create_circle_projection_spiral() self.circle_projection = self.create_circle_projection() self.golden_ellipse_points = self.create_golden_ellipse_projection() self.sine_projection = self.create_sine_projection() self.sine_visible = False # View self.elev = 30 self.azim = 45 self.dragging = False self.prev_mouse = None # Buttons and sliders self.create_buttons() self.create_slider() # Draw self.setup_plot() self.setup_info_panel() self.connect_events() def create_circle_projection_spiral(self): t = np.linspace(0, 2 * np.pi, 200) spiral_points = [] for angle in t: x = np.cos(angle) y = np.sin(angle) z = -1 + (angle / (2 '' np.pi)) '' 2 spiral_points.append([x, y, z]) return np.array(spiral_points) def create_circle_projection(self): return np.column_stack((self.spiral_points[:, 0], self.spiral_points[:, 1], np.ones_like(self.spiral_points[:, 2]))) def create_golden_ellipse_projection(self): t = np.linspace(0, 2 * np.pi, 100) major_axis = 1.0 minor_axis = major_axis / self.phi x = major_axis * np.cos(t) y = minor_axis * np.sin(t) z = np.ones_like(x) return np.column_stack((x, y, z)) def calculate_perspective_ellipse(self, view_angle): t = np.linspace(0, 2 * np.pi, 100) theta = np.radians(view_angle) perspective_minor_axis = np.cos(theta) x = np.cos(t) y = perspective_minor_axis * np.sin(t) z = np.ones_like(x) return np.column_stack((x, y, z)) def create_sine_projection(self): """Vertical sine wave descending through cube""" z = np.linspace(1, -1, 400) x = np.sin(4 '' np.pi '' (z + 1) / 2) y = np.zeros_like(z) return np.column_stack((x, y, z)) def create_buttons(self): self.ax_reset = plt.axes([0.3, 0.02, 0.1, 0.04]) self.ax_golden = plt.axes([0.41, 0.02, 0.15, 0.04]) self.ax_pyramid = plt.axes([0.57, 0.02, 0.15, 0.04]) self.ax_sine = plt.axes([0.74, 0.02, 0.15, 0.04]) self.button_reset = Button(self.ax_reset, 'Default View') self.button_golden = Button(self.ax_golden, 'Golden Ratio View') self.button_pyramid = Button(self.ax_pyramid, 'Pyramid Angle View') self.button_sine = Button(self.ax_sine, 'Toggle Sine Projection') self.button_reset.on_clicked(self.reset_view) self.button_golden.on_clicked(self.reset_to_golden_view) self.button_pyramid.on_clicked(self.reset_to_pyramid_view) self.button_sine.on_clicked(self.toggle_sine_projection) def create_slider(self): ax_slider = plt.axes([0.15, 0.02, 0.1, 0.04]) self.slider = Slider(ax_slider, 'Elevation', -90, 90, valinit=self.elev) self.slider.on_changed(self.update_elevation) def update_elevation(self, val): self.elev = val self.setup_plot() def setup_plot(self): self.ax.clear() # Draw cube faces for i, face in enumerate(self.faces): poly = Poly3DCollection([self.vertices[face]], alpha=0.03) poly.set_facecolor(self.face_colors[i]) poly.set_edgecolor('gray') poly.set_linewidth(0.5) self.ax.add_collection3d(poly) # Spiral s = self.spiral_points self.ax.plot3D(s[:, 0], s[:, 1], s[:, 2], color='black', linewidth=3, alpha=0.9) # Circle projection c = self.circle_projection self.ax.plot3D(c[:, 0], c[:, 1], c[:, 2], color='blue', linewidth=2) # Golden ellipse g = self.golden_ellipse_points self.ax.plot3D(g[:, 0], g[:, 1], g[:, 2], color='gold', linewidth=3) # Perspective ellipse (red dashed) p = self.calculate_perspective_ellipse(self.elev) self.ax.plot3D(p[:, 0], p[:, 1], p[:, 2], color='red', linestyle='--', linewidth=1.5) # Sine projection (optional) if self.sine_visible: sp = self.sine_projection self.ax.plot3D(sp[:, 0], sp[:, 1], sp[:, 2], color='orange', linewidth=3) # Labels and limits self.ax.set_xlim([-1.5, 1.5]) self.ax.set_ylim([-1.5, 1.5]) self.ax.set_zlim([-1.5, 1.5]) self.ax.set_xlabel('X Axis', fontweight='bold') self.ax.set_ylabel('Y Axis', fontweight='bold') self.ax.set_zlabel('Z Axis', fontweight='bold') self.ax.set_title('Golden Ellipse Phenomenon', fontweight='bold', fontsize=12) self.ax.view_init(elev=self.elev, azim=self.azim) self.fig.canvas.draw_idle() def setup_info_panel(self): self.ax_info.clear() self.ax_info.axis('off') minor_axis = 1 / self.phi pyramid_minor_axis = np.cos(np.radians(self.pyramid_angle)) pyramid_ratio = 1.0 / pyramid_minor_axis legend_text = ( "VISUAL ELEMENTS:\n" "Black: Spiral\n" "Blue: Circle Projection\n" "Gold: Golden Ellipse\n" "Red dashed: Perspective Ellipse\n" "Orange: Vertical Sine Projection\n\n" "GOLDEN RATIO INFO:\n" f"Phi = {self.phi:.6f}\n" f"Pyramid Angle = {self.pyramid_angle} deg\n" f"Minor Axis = {minor_axis:.6f}\n" f"Pyramid Ratio = {pyramid_ratio:.6f}\n\n" "CONTROLS:\n" "- Drag: Rotate\n" "- Mouse Wheel: Zoom\n" "- Buttons: Preset Views\n" "- Slider: Elevation\n" ) self.ax_info.text(0.05, 0.95, legend_text, transform=self.ax_info.transAxes, fontsize=9, verticalalignment='top', fontfamily='monospace', bbox=dict(boxstyle="round,pad=1", facecolor='lightblue', alpha=0.8)) self.fig.canvas.draw_idle() def connect_events(self): self.fig.canvas.mpl_connect('button_press_event', self.on_press) self.fig.canvas.mpl_connect('button_release_event', self.on_release) self.fig.canvas.mpl_connect('motion_notify_event', self.on_motion) self.fig.canvas.mpl_connect('scroll_event', self.on_scroll) def on_press(self, event): if event.inaxes == self.ax: self.dragging = True self.prev_mouse = (event.x, event.y) def on_release(self, event): self.dragging = False self.prev_mouse = None def on_motion(self, event): if not self.dragging or event.inaxes != self.ax or self.prev_mouse is None: return dx = event.x - self.prev_mouse[0] dy = event.y - self.prev_mouse[1] self.azim += dx * 0.5 self.elev -= dy * 0.5 self.elev = np.clip(self.elev, -90, 90) self.ax.view_init(elev=self.elev, azim=self.azim) self.fig.canvas.draw_idle() self.prev_mouse = (event.x, event.y) def on_scroll(self, event): if event.inaxes == self.ax: xlim = self.ax.get_xlim() ylim = self.ax.get_ylim() zlim = self.ax.get_zlim() x_center, y_center, z_center = np.mean(xlim), np.mean(ylim), np.mean(zlim) zoom_factor = 1.1 if event.step > 0 else 0.9 x_range = (xlim[1] - xlim[0]) * zoom_factor y_range = (ylim[1] - ylim[0]) * zoom_factor z_range = (zlim[1] - zlim[0]) * zoom_factor self.ax.set_xlim([x_center - x_range/2, x_center + x_range/2]) self.ax.set_ylim([y_center - y_range/2, y_center + y_range/2]) self.ax.set_zlim([z_center - z_range/2, z_center + z_range/2]) self.fig.canvas.draw_idle() def reset_view(self, event=None): self.elev, self.azim = 30, 45 self.setup_plot() def reset_to_golden_view(self, event=None): self.elev, self.azim = 52, 45 self.setup_plot() def reset_to_pyramid_view(self, event=None): self.elev, self.azim = self.pyramid_angle, 45 self.setup_plot() def toggle_sine_projection(self, event=None): self.sine_visible = not self.sine_visible self.setup_plot() def show(self): print("Golden Ellipse & Great Pyramid Visualization") print("==============================================") print("Toggle buttons to explore geometric relationships.") plt.show() if __name__ == "__main__": cube = GoldenEllipseSpiralCube() cube.show() </syntaxhighlight> ✅ Instructions # Copy this whole script into a new file called GoldenEllipseSpiralCubeSLIDER_SINE_VERTICAL_SAFE.py # Save it as UTF-8 (or ANSI, both fine — no special characters). # Run: ``<code>bash py GoldenEllipseSpiralCubeSLIDER_SINE_VERTICAL_SAFE.py </code>`` # Click “Toggle Sine Projection” → you’ll see the solid vertical orange sine wave smoothly descending inside the cube. Would you like me to make that sine wave animate smoothly (e.g. “grow” from top to bottom when toggled on)?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)