Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69143373-dd04-800c-b816-c177b3629d06
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== ## === Definimos Ψ(x)=C(x)eiθ(x),C≥0, θ∈R.\Psi(x)=\sqrt{C(x)} e^{i\theta(x)},\qquad C\ge0,\ \theta\in\mathbb{R}.Ψ(x)=C(x)eiθ(x),C≥0, θ∈R. Acción (repetida): S=∫d4x−g[116πGR+αgμν∇μΨ∗∇νΨ−V(C)−β(gμν∇μθ∇νθ−κf(C))2].S=\int d^4x\sqrt{-g}\Big[\frac{1}{16\pi G}R + \alpha g^{\mu\nu}\nabla_\mu\Psi^*\nabla_\nu\Psi - V(C) - \beta\big(g^{\mu\nu}\nabla_\mu\theta\nabla_\nu\theta - \kappa f(C)\big)^2\Big].S=∫d4x−g[16πG1R+αgμν∇μΨ∗∇νΨ−V(C)−β(gμν∇μθ∇νθ−κf(C))2]. Elegimos para concreción: V(C)=12mC2C2+λ4C4,f(C)=C.V(C)=\frac{1}{2}m_C^2 C^2 + \frac{\lambda}{4}C^4,\qquad f(C)=C.V(C)=21mC2C2+4λC4,f(C)=C. ==== Fondo plano y estacionario: ==== gμν=ημν+hμν,C=C0+δC,θ=ωt+φ(x).g_{\mu\nu}=\eta_{\mu\nu} + h_{\mu\nu},\qquad C=C_0+\delta C,\qquad \theta=\omega t + \varphi(x).gμν=ημν+hμν,C=C0+δC,θ=ωt+φ(x). Asumimos ∣hμν∣≪1, ∣δC∣≪C0, ∣φ∣≪1 |h_{\mu\nu}| \ll 1,\ |\delta C| \ll C_0,\ |\varphi|\ll1∣hμν∣≪1, ∣δC∣≪C0, ∣φ∣≪1. ==== Calcular (a primer orden) los términos dominantes: ==== * ∇μΨ≈12C0−1/2∂μδC eiωt+iC0(ωδμ0+∂μφ)eiωt\nabla_\mu\Psi \approx \tfrac{1}{2}C_0^{-1/2}\partial_\mu\delta C\, e^{i\omega t} + i\sqrt{C_0}(\omega\delta^0_\mu + \partial_\mu\varphi)e^{i\omega t}∇μΨ≈21C0−1/2∂μδCeiωt+iC0(ωδμ0+∂μφ)eiωt. * gμν∇μθ∇νθ≈−ω2+2ω∂0φ+(∂φ)2+hμνω2δμ0δν0+⋯g^{\mu\nu}\nabla_\mu\theta\nabla_\nu\theta \approx -\omega^2 + 2\omega\partial_0\varphi + (\partial\varphi)^2 + h^{\mu\nu}\omega^2\delta^0_\mu\delta^0_\nu + \cdotsgμν∇μθ∇νθ≈−ω2+2ω∂0φ+(∂φ)2+hμνω2δμ0δν0+⋯. ==== Variando respecto a θ\thetaθ y linealizando obtenemos (esquema): ==== αC0 □φ+4βω2 □φ−mφ2 φ=0,\alpha C_0\,\Box \varphi + 4\beta\omega^2\,\Box \varphi - m_\varphi^2\,\varphi = 0,αC0□φ+4βω2□φ−mφ2φ=0, donde mφ2≡2βκ+contribuciones de V′(C0),f′(C0).m_\varphi^2 \equiv 2\beta\kappa + \text{contribuciones de }V'(C_0),f'(C_0).mφ2≡2βκ+contribuciones de V′(C0),f′(C0). (Nota: derivación completa da factores numéricos adicionales; las constantes de acoplamiento emergen de derivadas de V,fV,fV,f.) Reordeno: (αC0+4βω2) (−∂t2+∇2)φ=mφ2 φ.(\alpha C_0 + 4\beta\omega^2)\,(-\partial_t^2 + \nabla^2)\varphi = m_\varphi^2\,\varphi.(αC0+4βω2)(−∂t2+∇2)φ=mφ2φ. Buscando soluciones de plano φ∝ei(k⋅x−Ωt) \varphi\propto e^{i(\mathbf{k\cdot x}-\Omega t)}φ∝ei(k⋅x−Ωt) conduce a la relación de dispersión implícita: (αC0+4βω2)(Ω2−∣k∣2)=mφ2.(\alpha C_0 + 4\beta\omega^2)(\Omega^2 - |\mathbf{k}|^2) = m_\varphi^2.(αC0+4βω2)(Ω2−∣k∣2)=mφ2. ===== Si el acoplamiento en fase es débil (o βω2\beta\omega^2βω2 pequeño comparado con αC0\alpha C_0αC0), aproximamos: ===== Ω2(k)≈∣k∣2+mφ2αC0+4βω2.\Omega^2(k) \approx |\mathbf{k}|^2 + \frac{m_\varphi^2}{\alpha C_0 + 4\beta\omega^2}.Ω2(k)≈∣k∣2+αC0+4βω2mφ2. Si mφ2>0m_\varphi^2>0mφ2>0 la fase tiene modo con masa efectiva meff2=mφ2/(αC0+4βω2)m_{\text{eff}}^2=m_\varphi^2/(\alpha C_0 + 4\beta\omega^2)meff2=mφ2/(αC0+4βω2). ===== Para estabilidad (no modos con Im(Ω)>0\mathrm{Im}(\Omega)>0Im(Ω)>0) necesitamos: ===== # αC0+4βω2>0\alpha C_0 + 4\beta\omega^2 > 0αC0+4βω2>0 (coeficiente cinético positivo). # mφ2≥0m_\varphi^2 \ge 0mφ2≥0 (evitar tachiones a primer orden). Esas igualdades imponen límites en parámetros α,β,κ,mC,λ\alpha,\beta,\kappa,m_C,\lambdaα,β,κ,mC,λ. ==== Linealizada da algo semejante a un oscilador acoplado: ==== α□ δC+MC2 δC=Sφ,h(x),\alpha\Box\,\delta C + M_C^2\,\delta C = S_{\varphi,h}(x),α□δC+MC2δC=Sφ,h(x), donde MC2=V′′(C0)M_C^2 = V''(C_0)MC2=V′′(C0) y el lado derecho son fuentes que dependen de (∂φ)2(\partial\varphi)^2(∂φ)2 y hμνh_{\mu\nu}hμν. ==== Linealizando GμνG_{\mu\nu}Gμν y usando gauges estándar (harmonic gauge), el perturbación hμνh_{\mu\nu}hμν satisface ==== □hˉμν=−16πG(δTμνΨ+δTμνint+δTμνmat).\Box \bar h_{\mu\nu} = -16\pi G \left(\delta T_{\mu\nu}^{\Psi} + \delta T_{\mu\nu}^{\text{int}} + \delta T_{\mu\nu}^\text{mat}\right).□hˉμν=−16πG(δTμνΨ+δTμνint+δTμνmat). La pieza dominante del tensor-energía de coherencia en fondo plano es proporcional a αC0 ∂μφ∂νφ\alpha C_0\,\partial_\mu\varphi\partial_\nu\varphiαC0∂μφ∂νφ y a términos en δC\delta CδC. En Fourier espacio, fuentes con componentes (Ω,k)(\Omega,\mathbf{k})(Ω,k) excitan hμνh_{\mu\nu}hμν en las mismas frecuencias/longitudes de onda, con amplitud escalada por GαC0G\alpha C_0GαC0. Consecuencia física: modulaciones de fase agresivas (alta CCC y grandes ∂φ\partial\varphi∂φ) producen curvatura mesoscópica proporcional a GαC0(∂φ)2G\alpha C_0(\partial\varphi)^2GαC0(∂φ)2.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)