Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6935580c-34e4-8001-9136-7bbdf1499790
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below I give precise statements, short proofs Fourier / kernel based and textbook references showing that i the heat se… === Below I give precise statements, short proofs (Fourier / kernel based) and textbook references showing that (i) the heat semigroup eνtΔe^{\nu t\Delta}eνtΔ is a bounded, strongly continuous (and smoothing) family of operators on the common norms used for Navier–Stokes, and (ii) the Leray projector PPP is a bounded linear operator on those same spaces. I restrict attention to the usual Banach/Sobolev spaces most used in the Picard approach: Lp(R3)L^p(\mathbb{R}^3)Lp(R3) for 1≤p≤∞1\le p\le\infty1≤p≤∞, Sobolev spaces Hs(R3)H^s(\mathbb{R}^3)Hs(R3) (equivalently Ws,2W^{s,2}Ws,2), and Hölder / Besov-type spaces where noted. I give references after each short proof. ==== ### ==== For each 1≤p≤∞1\le p\le\infty1≤p≤∞ and each t>0t>0t>0, Gtf=Kt∗f,Kt(x)=(4πνt)−3/2e−∣x∣2/(4νt),G_t f = K_t * f, \qquad K_t(x) = (4\pi\nu t)^{-3/2} e^{-|x|^2/(4\nu t)},Gtf=Kt∗f,Kt(x)=(4πνt)−3/2e−∣x∣2/(4νt), and ∥Gtf∥Lp≤∥f∥Lp(in fact ∥Gt∥Lp→Lp=1).\|G_t f\|_{L^p} \le \|f\|_{L^p}\qquad(\text{in fact }\|G_t\|_{L^p\to L^p}=1).∥Gtf∥Lp≤∥f∥Lp(in fact ∥Gt∥Lp→Lp=1). Proof (sketch). The heat kernel KtK_tKt is nonnegative and has unit mass ∫Kt=1\int K_t=1∫Kt=1. By Young’s convolution inequality, ∥Gtf∥Lp=∥Kt∗f∥Lp≤∥Kt∥L1∥f∥Lp=∥f∥Lp.\|G_t f\|_{L^p} = \|K_t * f\|_{L^p} \le \|K_t\|_{L^1}\|f\|_{L^p} = \|f\|_{L^p}.∥Gtf∥Lp=∥Kt∗f∥Lp≤∥Kt∥L1∥f∥Lp=∥f∥Lp. For p=∞p=\inftyp=∞ the same follows from ∥Kt∥L1=1\|K_t\|_{L^1}=1∥Kt∥L1=1. (Strict contractivity may hold on some spaces; the important fact is boundedness with norm ≤1\le1≤1.) References. Standard: Evans, Partial Differential Equations, §2.3; Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations; also Henry, Geometric Theory of Semilinear Parabolic Equations. ===== For any s∈Rs\in\mathbb{R}s∈R and any r≥0r\ge0r≥0, ===== ∥Gtf∥Hs+r≤C t−r/2 ∥f∥Hs,t>0,\|G_t f\|_{H^{s+r}} \le C\, t^{-r/2}\,\|f\|_{H^s},\qquad t>0,∥Gtf∥Hs+r≤Ct−r/2∥f∥Hs,t>0, where C=C(ν,r)C=C(\nu,r)C=C(ν,r). Equivalently, for integer k≥0k\ge0k≥0, ∥∇kGtf∥L2≤C t−k/2 ∥f∥L2.\|\nabla^k G_t f\|_{L^2} \le C\, t^{-k/2}\,\|f\|_{L^2}.∥∇kGtf∥L2≤Ct−k/2∥f∥L2. Proof (Fourier). Using the Fourier transform Gtf^(ξ)=e−νt∣ξ∣2f^(ξ)\widehat{G_t f}(\xi)=e^{-\nu t|\xi|^2}\widehat f(\xi)Gtf(ξ)=e−νt∣ξ∣2f(ξ), ∥Gtf∥Hs+r2=∫R3(1+∣ξ∣2)s+re−2νt∣ξ∣2∣f^(ξ)∣2 dξ.\|G_t f\|_{H^{s+r}}^2 = \int_{\mathbb{R}^3} (1+|\xi|^2)^{s+r} e^{-2\nu t|\xi|^2} |\widehat f(\xi)|^2\,d\xi.∥Gtf∥Hs+r2=∫R3(1+∣ξ∣2)s+re−2νt∣ξ∣2∣f(ξ)∣2dξ. Factor (1+∣ξ∣2)re−2νt∣ξ∣2≤C t−r(1+|\xi|^2)^{r} e^{-2\nu t|\xi|^2} \le C\, t^{-r}(1+∣ξ∣2)re−2νt∣ξ∣2≤Ct−r (supremum over ξ\xiξ is O(t−r)O(t^{-r})O(t−r)). Thus the integral is ≤Ct−r∥f∥Hs2\le C t^{-r}\|f\|_{H^s}^2≤Ct−r∥f∥Hs2. Take square root to get the stated estimate. References. Standard Fourier-semigroup calculation; see Pazy (semigroup theory), Evans §2.3, and Temam, Navier–Stokes Equations. ===== GtG_tGt is a strongly continuous semigroup on LpL^pLp and on HsH^sHs: for each fff fixed, ===== limt↓0∥Gtf−f∥X=0,X=Lp or Hs.\lim_{t\downarrow 0} \|G_t f - f\|_{X} = 0,\qquad X=L^p\ \text{or}\ H^s.t↓0lim∥Gtf−f∥X=0,X=Lp or Hs. Proof (sketch). For LpL^pLp this follows from the approximation-identity property of KtK_tKt as t→0t\to0t→0. For HsH^sHs, use the Fourier representation: (1+∣ξ∣2)s/2(e−νt∣ξ∣2−1)f^(ξ)→0(1+|\xi|^2)^{s/2}(e^{-\nu t|\xi|^2}-1)\widehat f(\xi)\to0(1+∣ξ∣2)s/2(e−νt∣ξ∣2−1)f(ξ)→0 pointwise and dominated convergence given (1+∣ξ∣2)s∣f^∣2∈L1(1+|\xi|^2)^{s}|\widehat f|^2\in L^1(1+∣ξ∣2)s∣f∣2∈L1. Thus strong continuity holds. References. Pazy, Semigroups; see also functional-analytic texts and Evans. ===== For 1≤p≤q≤∞1\le p\le q\le\infty1≤p≤q≤∞, ===== ∥Gtf∥Lq≤Ct−32(1p−1q)∥f∥Lp,\|G_t f\|_{L^q} \le C t^{-\frac{3}{2}(\frac{1}{p}-\frac{1}{q})} \|f\|_{L^p},∥Gtf∥Lq≤Ct−23(p1−q1)∥f∥Lp, with the usual Gaussian scaling. This provides short-time control near t=0t=0t=0. Proof. Estimate KtK_tKt in LrL^rLr norms and apply Young inequality. Standard. References. Beckner/Young/heat kernel estimates; see Stein, Harmonic Analysis or Davies, Heat Kernels and Spectral Theory. ==== Recall the matrix-valued Fourier multiplier for PPP: ==== Pf^(ξ)=(I−ξ⊗ξ∣ξ∣2)f^(ξ)=:P(ξ)f^(ξ).\widehat{P f}(\xi) = \Big(I - \frac{\xi\otimes\xi}{|\xi|^2}\Big)\widehat f(\xi) =:\mathbb{P}(\xi)\widehat f(\xi).Pf(ξ)=(I−∣ξ∣2ξ⊗ξ)f(ξ)=:P(ξ)f(ξ). Each component of P(ξ)\mathbb{P}(\xi)P(ξ) is a homogeneous rational function of degree 000 in ξ\xiξ (symbol of order 000). ===== The Leray projector PPP extends to a bounded linear operator on Lp(R3;R3)L^p(\mathbb{R}^3;\mathbb{R}^3)Lp(R3;R3) for every 1<p<∞1<p<\infty1<p<∞. More precisely, the components of PPP are combinations of singular integral operators (Riesz transforms) and the identity; hence Calderón–Zygmund theory applies. ===== Proof (sketch). Write I−ξ⊗ξ/∣ξ∣2=I−ξiξj∣ξ∣2I - \xi\otimes\xi/|\xi|^2 = I - \frac{\xi_i\xi_j}{|\xi|^2}I−ξ⊗ξ/∣ξ∣2=I−∣ξ∣2ξiξj. The scalar multipliers ξk/∣ξ∣\xi_k/|\xi|ξk/∣ξ∣ correspond to Riesz transforms Rk\mathcal{R}_kRk whose kernels are homogeneous of degree −3-3−3 and satisfy Calderón–Zygmund kernel bounds. The entries of P\mathbb{P}P are linear combinations of products of Riesz transforms (order-zero multipliers). By Calderón–Zygmund theory (or the Mikhlin multiplier theorem), these are bounded on LpL^pLp for 1<p<∞1<p<\infty1<p<∞. References. Stein, Singular Integrals and Differentiability Properties of Functions (Riesz transforms & CZ theory); Grafakos, Classical Fourier Analysis (Mikhlin theorem, multipliers); also Temam or Constantin–Foias for Navier–Stokes. ===== PPP is bounded on Hs(R3)H^s(\mathbb{R}^3)Hs(R3) for every real sss; i.e. ===== ∥Pf∥Hs≤Cs∥f∥Hs.\|P f\|_{H^s} \le C_s \|f\|_{H^s}.∥Pf∥Hs≤Cs∥f∥Hs. Proof (Fourier / multiplier). PPP is a Fourier multiplier with symbol P(ξ)\mathbb{P}(\xi)P(ξ) that is smooth away from ξ=0\xi=0ξ=0 and homogeneous of degree 000. For an HsH^sHs-norm, ∥Pf∥Hs2=∫(1+∣ξ∣2)s∣P(ξ)f^(ξ)∣2 dξ≤supξ∥P(ξ)∥2(1+∣ξ∣2)s∣f^(ξ)∣2 dξ=C∥f∥Hs2,\|P f\|_{H^s}^2 = \int (1+|\xi|^2)^s |\mathbb{P}(\xi)\widehat f(\xi)|^2\,d\xi \le \sup_\xi \|\mathbb{P}(\xi)\|^2 (1+|\xi|^2)^s |\widehat f(\xi)|^2\,d\xi = C \|f\|_{H^s}^2,∥Pf∥Hs2=∫(1+∣ξ∣2)s∣P(ξ)f(ξ)∣2dξ≤ξsup∥P(ξ)∥2(1+∣ξ∣2)s∣f(ξ)∣2dξ=C∥f∥Hs2, since P(ξ)\mathbb{P}(\xi)P(ξ) is bounded (matrix entries are bounded by 1). More refined multiplier theorems (Mikhlin) give boundedness on Ws,pW^{s,p}Ws,p and Besov spaces. References. Mikhlin multiplier theorem (Grafakos), Stein; for direct PDE context see Temam, Navier–Stokes Equations or Lions, Quelques méthodes. ===== By Littlewood–Paley theory and multiplier theorems, PPP is bounded on Besov spaces Bp,qsB^s_{p,q}Bp,qs and Hölder spaces CαC^\alphaCα (appropriate ranges) — essentially because PPP is an order-zero Fourier multiplier satisfying the standard symbol estimates. ===== References. Bahouri–Chemin–Danchin, Fourier Analysis and Nonlinear Partial Differential Equations; Triebel, Theory of Function Spaces. ==== From the facts above we get the exact properties needed in the mild/Picard construction: ==== * eνtΔe^{\nu t\Delta}eνtΔ is bounded X→XX\to XX→X for X=LpX=L^pX=Lp or X=HsX=H^sX=Hs and is strongly continuous there. (Statements 1 and 3.) * eνtΔe^{\nu t\Delta}eνtΔ is smoothing: it maps XXX to spaces with higher regularity with the explicit gain estimate ∥etΔf∥Hs+r≤Ct−r/2∥f∥Hs\|e^{t\Delta}f\|_{H^{s+r}}\le C t^{-r/2}\|f\|_{H^s}∥etΔf∥Hs+r≤Ct−r/2∥f∥Hs. (Statement 2.) * PPP is a bounded linear operator on XXX for the ranges above. (Statements 5–7.) * Consequently the bilinear map B(u,v)=P∇⋅(u⊗v)B(u,v)=P\nabla\cdot(u\otimes v)B(u,v)=P∇⋅(u⊗v) satisfies the algebra estimates used in Picard: - If X=HsX=H^sX=Hs with s>3/2s>3/2s>3/2 then HsH^sHs is an algebra and pointwise product maps Hs×Hs→HsH^s\times H^s\to H^sHs×Hs→Hs; ∇⋅\nabla\cdot∇⋅ maps Hs→Hs−1H^s\to H^{s-1}Hs→Hs−1 and PPP maps Hs−1→Hs−1H^{s-1}\to H^{s-1}Hs−1→Hs−1. Hence ∥B(u,v)∥Hs−1≤C∥u∥Hs∥v∥Hs.\|B(u,v)\|_{H^{s-1}} \le C \|u\|_{H^s}\|v\|_{H^s}.∥B(u,v)∥Hs−1≤C∥u∥Hs∥v∥Hs. - If X=LpX=L^pX=Lp with ppp large and suitable Sobolev embeddings hold, analogous estimates can be arranged (use Besov or Bony paraproduct calculus for critical spaces). References for the Picard setup. * Temam, Navier–Stokes Equations (local existence in Sobolev spaces); * Constantin & Foias, Navier–Stokes Equations (functional setting and semigroup methods); * Pazy, Semigroups of Linear Operators (abstract semigroup-based local theory); * Bahouri–Chemin–Danchin for critical spaces. ==== - L. C. Evans, Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics, AMS — heat kernel facts, semigroup basics. ==== * A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer — abstract semigroup theory and strong continuity. * H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer — Sobolev embeddings and algebra properties. * P. G. Lemarié-Rieusset, Recent developments in the Navier–Stokes problem, CRC Press — comprehensive Navier–Stokes functional analysis. * P. Constantin and C. Foias, Navier–Stokes Equations, University of Chicago Press — classical functional setting, Leray projector, semigroup methods. * E. M. Stein, Singular Integrals and Differentiability Properties of Functions — Calderón–Zygmund theorems and Riesz transforms. * L. Grafakos, Classical Fourier Analysis — Mikhlin multipliers and detailed proofs for Fourier multipliers on LpL^pLp and Sobolev scales. * H. Bahouri, J.-Y. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations — for Besov and paraproduct approaches. ==== I can write fully detailed, line-by-line proofs for any of the following (pick one): ==== # The HsH^sHs-smoothing estimate ∥etΔf∥Hs+r≤Ct−r/2∥f∥Hs\|e^{t\Delta} f\|_{H^{s+r}} \le C t^{-r/2}\|f\|_{H^s}∥etΔf∥Hs+r≤Ct−r/2∥f∥Hs (Fourier proof with explicit constants). # Boundedness of the Leray projector on LpL^pLp via Calderón–Zygmund/Riesz-transform decomposition (construct kernels and verify CZ estimates). # Verification that for X=HsX=H^sX=Hs with s>3/2s>3/2s>3/2 the bilinear map B(u,v)=P∇⋅(u⊗v)B(u,v)=P\nabla\cdot(u\otimes v)B(u,v)=P∇⋅(u⊗v) satisfies ∥B(u,v)∥Hs−1≤C∥u∥Hs∥v∥Hs\|B(u,v)\|_{H^{s-1}} \le C\|u\|_{H^s}\|v\|_{H^s}∥B(u,v)∥Hs−1≤C∥u∥Hs∥v∥Hs (product and derivative estimates). Tell me which one you want first and I will produce the step-by-step derivation.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)