Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/671f1f95-b2ec-8009-ad5e-41d258fa95d9
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== 2. Kombinasi ===== Kombinasi adalah pemilihan objek di mana urutan tidak penting. Dalam kombinasi, jika Anda mengubah urutan objek yang dipilih, hasilnya tetap sama. Rumus kombinasi untuk memilih rrr objek dari nnn objek yang tersedia adalah: C(n,r)=n!r!(nβr)!C(n, r) = \frac{n!}{r!(n-r)!}C(n,r)=r!(nβr)!n!β * C(n,r)C(n, r)C(n,r) adalah jumlah cara untuk memilih rrr objek dari nnn objek tanpa memperhatikan urutan. Contoh: Misalkan ada 5 orang (A, B, C, D, E) dan kita ingin memilih 3 orang untuk membentuk tim. Karena urutan tidak penting, maka ini adalah kasus kombinasi. Jumlah kombinasi adalah: C(5,3)=5!3!(5β3)!=5!3!2!=5Γ4Γ3Γ2Γ1(3Γ2Γ1)(2Γ1)=10C(5, 3) = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(2 \times 1)} = 10C(5,3)=3!(5β3)!5!β=3!2!5!β=(3Γ2Γ1)(2Γ1)5Γ4Γ3Γ2Γ1β=10 Jadi, ada 10 cara untuk memilih 3 orang dari 5 orang tersebut tanpa memperhatikan urutan.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)