Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69143373-dd04-800c-b816-c177b3629d06
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Tomamos la acción propuesta (resumen): === S=∫d4x−g[116πGR+αgμν∇μΨ∗∇νΨ−V(C)−β(gμν∇μθ∇νθ−κf(C))2+Lmat].S = \int d^4x\sqrt{-g}\left[\frac{1}{16\pi G}R + \alpha g^{\mu\nu}\nabla_\mu\Psi^*\nabla_\nu\Psi - V(C) - \beta\left(g^{\mu\nu}\nabla_\mu\theta\nabla_\nu\theta - \kappa f(C)\right)^2 + \mathcal{L}_{\text{mat}}\right].S=∫d4x−g[16πG1R+αgμν∇μΨ∗∇νΨ−V(C)−β(gμν∇μθ∇νθ−κf(C))2+Lmat]. Escribimos Ψ=C eiθ\Psi=\sqrt{C}\,e^{i\theta}Ψ=Ceiθ. Para linealizar, expandimos alrededor de un fondo plano y estacionario: * Fondo: gμν=ημν+hμνg_{\mu\nu}=\eta_{\mu\nu} + h_{\mu\nu}gμν=ημν+hμν con ∣hμν∣≪1|h_{\mu\nu}|\ll1∣hμν∣≪1. * Coherencia de fondo: C=C0+δCC=C_0 + \delta CC=C0+δC, θ=ωt+φ\theta = \omega t + \varphiθ=ωt+φ con ∣δC∣≪C0|\delta C| \ll C_0∣δC∣≪C0, ∣φ∣≪1|\varphi| \ll 1∣φ∣≪1. A primer orden en perturbaciones: # Expandir Ψ\PsiΨ y sus derivadas: ∇μΨ≈12C0−1/2∂μδC eiωt+iC0(ωδμ0+∂μφ)eiωt.\nabla_\mu\Psi \approx \frac{1}{2}C_0^{-1/2}\partial_\mu \delta C\, e^{i\omega t} + i\sqrt{C_0}(\omega \delta^0_\mu + \partial_\mu\varphi)e^{i\omega t}.∇μΨ≈21C0−1/2∂μδCeiωt+iC0(ωδμ0+∂μφ)eiωt. # El término de interacción, linealizado, produce términos proporcionales a: (ηρσ(ωδρ0+∂ρφ)(ωδσ0+∂σφ)−κf(C0)−κf′(C0)δC).\left( \eta^{\rho\sigma}(\omega\delta^0_\rho + \partial_\rho\varphi)(\omega\delta^0_\sigma + \partial_\sigma\varphi) - \kappa f(C_0) - \kappa f'(C_0)\delta C \right).(ηρσ(ωδρ0+∂ρφ)(ωδσ0+∂σφ)−κf(C0)−κf′(C0)δC). # Ecuaciones lineales acopladas (esquema): * Para hμνh_{\mu\nu}hμν: δGμν=8πG(δTμνΨ+δTμνint)\delta G_{\mu\nu} = 8\pi G(\delta T_{\mu\nu}^{\Psi} + \delta T_{\mu\nu}^{\text{int}})δGμν=8πG(δTμνΨ+δTμνint). * Para φ\varphiφ: una ecuación de onda con término de masa efectivo inducido por el acoplamiento β\betaβ: αC0□φ+4βω2(□φ)−mφ2φ=0,\alpha C_0 \Box \varphi + 4\beta \omega^2 (\Box \varphi) - m_\varphi^2 \varphi = 0,αC0□φ+4βω2(□φ)−mφ2φ=0, con mφ2m_\varphi^2mφ2 dependiente de f′(C0)f'(C_0)f′(C0) y del fondo. * Para δC\delta CδC: un oscilador amortiguado: α□δC+MC2δC+acoples a φ, hμν=0.\alpha \Box \delta C + M_C^2 \delta C + \text{acoples a }\varphi,\ h_{\mu\nu} = 0.α□δC+MC2δC+acoples a φ, hμν=0. El mensaje clave: las perturbaciones de fase φ\varphiφ y amplitud δC\delta CδC generan términos en el tensor energía-momento que actúan como fuente de curvatura hμνh_{\mu\nu}hμν. En el régimen donde el término de interacción minimiza su penalización, las ecuaciones se simplifican a condiciones de resonancia entre φ\varphiφ y hμνh_{\mu\nu}hμν.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)