Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69174844-9774-8012-8b69-32262ca5e35a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== ### ==== * 态空间结构:量子态属于希尔伯特空间。 * 内积与算符:⟨ψ∣ϕ⟩\langle \psi | \phi \rangle⟨ψ∣ϕ⟩,O^\hat{O}O^ 的厄米性。 * 张量积结构:多粒子态 ∣p1,p2,...⟩=∣p1⟩⊗∣p2⟩|p_1, p_2, ... \rangle = |p_1\rangle\otimes|p_2\rangle∣p1,p2,...⟩=∣p1⟩⊗∣p2⟩。 * 升降算符代数: [ap,ap′†]=δ3(p−p′)[a_{\mathbf{p}}, a_{\mathbf{p}'}^\dagger] = \delta^3(\mathbf{p}-\mathbf{p}')[ap,ap′†]=δ3(p−p′) 这是算符代数的具体实现。 : ===== - 场展开: ϕ(x)=∫d3p(2π)312Ep(ape−ipx+ap†eipx)\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left( a_p e^{-ipx} + a_p^\dagger e^{ipx} \right)ϕ(x)=∫(2π)3d3p2Ep1(ape−ipx+ap†eipx) ===== * δ 函数是分布意义下的正交归一关系。 * 传播子(propagator)是微分算符的格林函数: (□+m2)DF(x−x′)=−iδ(4)(x−x′)(\Box + m^2) D_F(x-x') = -i\delta^{(4)}(x-x')(□+m2)DF(x−x′)=−iδ(4)(x−x′) : ===== - 费曼传播子积分中广泛用复平面变形: ∫d4p(2π)4ip2−m2+iϵ\int \frac{d^4p}{(2\pi)^4}\frac{i}{p^2 - m^2 + i\epsilon}∫(2π)4d4pp2−m2+iϵi 解析延拓 + 留数计算是 QFT 的标准操作。 ===== * Wick rotation(t→−iτt\to -i\taut→−iτ)把 Minkowski 积分转成 Euclidean 积分。 : ===== : ===== * 对称性 ↔ 代数 ↔ 守恒量:Noether 定理。 * 李群/李代数: - U(1)U(1)U(1):电磁相位对称; - SU(2)SU(2)SU(2):弱相互作用; - SU(3)SU(3)SU(3):强相互作用(量子色动力学 QCD)。 * 表示理论:粒子种类 ↔ 群的不可约表示(例如旋量表示)。 * 洛伦兹群与旋量理论: - SO(3,1)SO(3,1)SO(3,1)、其双覆盖 SL(2,C)SL(2,\mathbb{C})SL(2,C)。 - 狄拉克矩阵、Weyl 旋量、Majorana 旋量都出自此。 : ===== - 场论中的作用量: S[ϕ]=∫d4x L(ϕ,∂μϕ)S[\phi] = \int d^4x\, \mathcal{L}(\phi, \partial_\mu \phi)S[ϕ]=∫d4xL(ϕ,∂μϕ) ===== * 变分得到欧拉–拉格朗日方程: ∂L∂ϕ−∂μ∂L∂(∂μϕ)=0\frac{\partial \mathcal{L}}{\partial \phi} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu\phi)} = 0∂ϕ∂L−∂μ∂(∂μϕ)∂L=0 * 对称性分析 → Noether 定理。 :
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)