Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69174844-9774-8012-8b69-32262ca5e35a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 非常好的问题。 === 非常好的问题。 量子场论(Quantum Field Theory, QFT)是物理学中最依赖数学结构的分支之一,它几乎囊括了从线性代数 → 群论 → 微分几何 → 泛函分析 → 分布理论的一整条现代数学链。 下面我分层次给你整理——从“最基础”到“高级框架”,让你看清哪些数学是真正核心的工具,哪些是“为了更严密表述而引入”的。 ==== ### ==== * 态空间结构:量子态属于希尔伯特空间。 * 内积与算符:⟨ψ∣ϕ⟩\langle \psi | \phi \rangle⟨ψ∣ϕ⟩,O^\hat{O}O^ 的厄米性。 * 张量积结构:多粒子态 ∣p1,p2,...⟩=∣p1⟩⊗∣p2⟩|p_1, p_2, ... \rangle = |p_1\rangle\otimes|p_2\rangle∣p1,p2,...⟩=∣p1⟩⊗∣p2⟩。 * 升降算符代数: [ap,ap′†]=δ3(p−p′)[a_{\mathbf{p}}, a_{\mathbf{p}'}^\dagger] = \delta^3(\mathbf{p}-\mathbf{p}')[ap,ap′†]=δ3(p−p′) 这是算符代数的具体实现。 : ===== - 场展开: ϕ(x)=∫d3p(2π)312Ep(ape−ipx+ap†eipx)\phi(x) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left( a_p e^{-ipx} + a_p^\dagger e^{ipx} \right)ϕ(x)=∫(2π)3d3p2Ep1(ape−ipx+ap†eipx) ===== * δ 函数是分布意义下的正交归一关系。 * 传播子(propagator)是微分算符的格林函数: (□+m2)DF(x−x′)=−iδ(4)(x−x′)(\Box + m^2) D_F(x-x') = -i\delta^{(4)}(x-x')(□+m2)DF(x−x′)=−iδ(4)(x−x′) : ===== - 费曼传播子积分中广泛用复平面变形: ∫d4p(2π)4ip2−m2+iϵ\int \frac{d^4p}{(2\pi)^4}\frac{i}{p^2 - m^2 + i\epsilon}∫(2π)4d4pp2−m2+iϵi 解析延拓 + 留数计算是 QFT 的标准操作。 ===== * Wick rotation(t→−iτt\to -i\taut→−iτ)把 Minkowski 积分转成 Euclidean 积分。 : ===== : ===== * 对称性 ↔ 代数 ↔ 守恒量:Noether 定理。 * 李群/李代数: - U(1)U(1)U(1):电磁相位对称; - SU(2)SU(2)SU(2):弱相互作用; - SU(3)SU(3)SU(3):强相互作用(量子色动力学 QCD)。 * 表示理论:粒子种类 ↔ 群的不可约表示(例如旋量表示)。 * 洛伦兹群与旋量理论: - SO(3,1)SO(3,1)SO(3,1)、其双覆盖 SL(2,C)SL(2,\mathbb{C})SL(2,C)。 - 狄拉克矩阵、Weyl 旋量、Majorana 旋量都出自此。 : ===== - 场论中的作用量: S[ϕ]=∫d4x L(ϕ,∂μϕ)S[\phi] = \int d^4x\, \mathcal{L}(\phi, \partial_\mu \phi)S[ϕ]=∫d4xL(ϕ,∂μϕ) ===== * 变分得到欧拉–拉格朗日方程: ∂L∂ϕ−∂μ∂L∂(∂μϕ)=0\frac{\partial \mathcal{L}}{\partial \phi} - \partial_\mu \frac{\partial \mathcal{L}}{\partial (\partial_\mu\phi)} = 0∂ϕ∂L−∂μ∂(∂μϕ)∂L=0 * 对称性分析 → Noether 定理。 : ==== ### ==== * 场视作函数空间的变量,积分为: Z=∫Dϕ eiS[ϕ]/ℏZ = \int \mathcal{D}\phi\, e^{iS[\phi]/\hbar}Z=∫DϕeiS[ϕ]/ℏ * 这是泛函分析中的“测度论 + 高维高斯积分”问题。 * 使用高斯泛函积分技巧: ∫Dϕ e−12ϕAϕ+Jϕ=1detAe12JA−1J\int \mathcal{D}\phi\, e^{-\frac{1}{2}\phi A \phi + J\phi} = \frac{1}{\sqrt{\det A}} e^{\frac{1}{2} J A^{-1} J}∫Dϕe−21ϕAϕ+Jϕ=detA1e21JA−1J * 关联函数为泛函导数生成: ⟨ϕ(x1)ϕ(x2)⟩=1Zδ2Z[J]δJ(x1)δJ(x2)∣J=0\langle \phi(x_1)\phi(x_2) \rangle = \frac{1}{Z}\frac{\delta^2 Z[J]}{\delta J(x_1)\delta J(x_2)}\Big|_{J=0}⟨ϕ(x1)ϕ(x2)⟩=Z1δJ(x1)δJ(x2)δ2Z[J]J=0 : ===== - '''规范场理论(Gauge theory)本质是纤维丛理论(fiber bundle)'''的物理化。 - 规范场 AμA_\muAμ:联络(connection); - 场强 FμνF_{\mu\nu}Fμν:曲率(curvature)。 Fμν=∂μAν−∂νAμ+ig[Aμ,Aν]F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + ig[A_\mu, A_\nu]Fμν=∂μAν−∂νAμ+ig[Aμ,Aν] ===== * 规范变换:丛的截面变换。 * 规范协变导数:Dμ=∂μ+igAμD_\mu = \partial_\mu + igA_\muDμ=∂μ+igAμ。 : * Nakahara《Geometry, Topology and Physics》 * Baez & Muniain《Gauge Fields, Knots and Gravity》 ===== - 利用微积分与对数标度分析研究参数随能标变化: μdgdμ=β(g)\mu \frac{d g}{d\mu} = \beta(g)μdμdg=β(g) ===== * β函数来源于积分发散的正则化与重整化操作。 * 常用数学: - 维数正则化; - Gamma 函数、ζ 函数; - 渐近展开与对数微分。 : ===== - 计算散射矩阵: S=Texp (−i∫HI(t) dt)S = T\exp\!\Big(-i\int H_I(t)\,dt\Big)S=Texp(−i∫HI(t)dt) 用Dyson 展开(时序指数)。 ===== * 正规序与 Wick 定理: Wick 定理的数学基础是算符代数与高斯积分展开。 ==== | | | | ==== | --- | --- | --- | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ==== | | | | ==== | --- | --- | --- | | | | | | | | | | | | | | | | | 是否希望我帮你出一份「量子场论数学工具学习路线图」? 我可以按照从“本科物理背景 → QFT研究水平”的阶段列出具体学习顺序、对应教材和建议习题。
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)