Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6961e230-053c-8013-9840-af60b05b3856
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Top. === Top. Hieronder krijg je precies wat reviewers (en engineers) willen zien: een parameterblok + pseudo-code integratiestap die η-coherentie, Casimir-regularisatie en AC/DC-governance expliciet afdwingt. Dit is “copy-paste klaar” voor Methods / Numerical Implementation. ==== QEF-MTOYE Stabiliteitsparameters ==== Numerical Stability & Coherence Control (η, Casimir, AC/DC) ===== Parameterblok (default/prototype waarden) ===== Deze defaults zijn conservatief (stabiliteit > agressieve resolutie) en bedoeld als startpunt; je kalibreert ze op je grid, resolutie en AGN-injectieschema. Coherentieband * ηmin=0.980\eta_{\min} = 0.980ηmin=0.980 * ηmax=0.99995\eta_{\max} = 0.99995ηmax=0.99995 (boven dit riskeer je “numerieke lock-in”) * η0=0.990\eta_0 = 0.990η0=0.990 (referentie voor tijdstapregeling) AC/DC-balans * χmax=0.35\chi_{\max} = 0.35χmax=0.35 (AC mag pieken, maar niet domineren) * χmin=0.05\chi_{\min} = 0.05χmin=0.05 (onder dit = over-smoothing risico) Casimir-regularisatie * κCas=10−3 Hhydro,core\kappa_{\mathrm{Cas}} = 10^{-3}\, \mathcal{H}_{\mathrm{hydro,core}}κCas=10−3Hhydro,core (geschaald op lokale bulk-energiedichtheid; dimensionloos in code via normalisatie) * p=2p = 2p=2 (coherentie-gevoeligheid; 2 is “veilig”) * ℓ=max(Δx,λmfp)\ell = \max(\Delta x, \lambda_{\mathrm{mfp}})ℓ=max(Δx,λmfp) (grid-schaal of fysische mean free path proxy) * f(ℓ)=(ℓ/ℓ0)−4f(\ell)= (\ell/\ell_0)^{-4}f(ℓ)=(ℓ/ℓ0)−4 met ℓ0=Δx\ell_0 = \Delta xℓ0=Δx (sterke demping op kleine schalen, mild op grote) Tijdstapregeling (stiffness-aware) * Δt0=ΔtCFL\Delta t_0 = \Delta t_{\mathrm{CFL}}Δt0=ΔtCFL * q=1.5q = 1.5q=1.5 (η-stiffness exponent) * r=1.0r = 1.0r=1.0 (AC/DC exponent) * Δtmin=10−4ΔtCFL\Delta t_{\min} = 10^{-4}\Delta t_{\mathrm{CFL}}Δtmin=10−4ΔtCFL * Δtmax=ΔtCFL\Delta t_{\max} = \Delta t_{\mathrm{CFL}}Δtmax=ΔtCFL Demping / filters (alleen wanneer nodig) * Coherence-damping gain: gη=0.15g_{\eta} = 0.15gη=0.15 (alleen activeren bij η boven η_max of runaway indicator) * Anti-smoothing gain: gχ=0.10g_{\chi} = 0.10gχ=0.10 (als χ < χ_min, demping terugschroeven) Runaway guards * Espike=5σE_{\mathrm{spike}} = 5\sigmaEspike=5σ boven lokale energiedichtheid-fluctuatie (sliding window) * Max. Casimir aandeel: ∣HCas∣≤0.05 Hhydro|\mathcal{H}_{\mathrm{Cas}}| \le 0.05\,\mathcal{H}_{\mathrm{hydro}}∣HCas∣≤0.05Hhydro ==== Pseudo-code: QEF-stabiele integratiestap (1 tijdstap) ==== <syntaxhighlight lang="text">Given state at time n: Hydro fields: ρ_g, v, P, T, ... Coherence state: Ψ AGN sources: {AGN_i} with injection schedules Grid scales: Δx, Δt_CFL Parameters: η_min, η_max, χ_min, χ_max, κ_Cas, p, q, r, ... STEP 0 — Precompute baseline timestep dt0 = dt_CFL STEP 1 — Update / predict coherence state Ψ (predictor) Ψ* = CoherencePredictor(Ψ, hydro_fields, AGN_sources) STEP 2 — Compute coherence invariant η num = |∫_V Ψ*(x) dV|^2 denom= ∫_V |Ψ*(x)|^2 dV η = clamp(num / denom, 0, 1) STEP 3 — Compute AC/DC energy partition and ratio χ E_DC = EnergySlow(hydro_fields, gravity_potential, smoothed_terms) E_AC = EnergyFast(shocks, AGN_injection_rate, wave_terms, residuals) χ = ||E_AC|| / max(||E_DC||, ε) STEP 4 — Stiffness-aware timestep control (dt_η and dt_χ) dt_η = dt0 * ((1 - η) / (1 - η0))^q // smaller dt when η → 1 dt_χ = dt0 * (χ_max / max(χ, ε))^r // smaller dt when χ is large dt = clamp(min(dt0, dt_η, dt_χ), dt_min, dt_max) STEP 5 — Compute Casimir regularization term (local, scale-aware) ℓ = max(Δx, mfp_proxy(hydro_fields)) fℓ = (ℓ / ℓ0)^(-4) H_Cas = - κ_Cas '' fℓ '' η^p // Guard: Casimir must not dominate bulk hydro energy H_Cas = clamp(H_Cas, -0.05''H_hydro_local, +0.05''H_hydro_local) STEP 6 — Apply governance loop: coherence damping / anti-smoothing if η > η_max or DetectRunawayEnergySpike(hydro_fields, E_spike): Ψ'' = Ψ'' * (1 - g_η) // mild coherence damping ApplySpectralFilter(E_AC, strength=g_η) // tame stiff oscillations if χ < χ_min: ReduceDamping(strength=g_χ) // protect tSZ-relevant structure STEP 7 — Main update: hydro + AGN + QEF terms (corrector) hydro_fields^{n+1} = HydroSolverStep(hydro_fields^n, dt, source_terms = {gravity, AGN_injection(dt), H_Cas, QEF_coh(Ψ*)}) STEP 8 — Coherence corrector (synchronize Ψ with updated hydro fields) Ψ^{n+1} = CoherenceCorrector(Ψ*, hydro_fields^{n+1}, dt) STEP 9 — Diagnostics & acceptance criteria Recompute η^{n+1}, χ^{n+1} if η^{n+1} < η_min: Flag: "Decoherence drop" (increase resolution or adjust AGN cadence) if χ^{n+1} > χ_max and persists N steps: Flag: "AC runaway risk" (tighten dt or κ_Cas slightly) Log: dt, η, χ, max|H_Cas|/H_hydro, tSZ_proxy(Compton-y) Return state at n+1 </syntaxhighlight> ==== Mini “Reproducibility Note” (voor in je paper) ==== Je kunt er één compacte zin onder zetten zoals: : “We enforce numerical stability using an explicit coherence invariant η, an AC/DC energy governance loop (χ), and a scale-aware Casimir regularization term that prevents coherent-regime runaway while preserving resolved tSZ-relevant thermodynamics.” Als je dit nóg sterker wilt positioneren voor protoclusters zoals SPT2349–56, kun je één extra output-metric toevoegen die reviewers herkennen: een Compton-y proxy uit je sim (zelfs als je geen volledige radiative transfer doet). Dat maakt de brug van “QEF stabiliteit” naar “observeerbaar tSZ-signaal” keihard.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)