Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/695dfc16-b2ac-8005-980b-b86d96450929
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 我們分兩部分來分析: === 我們分兩部分來分析: ==== 我們用上一題最後最精確的模值: ==== * 114514 mod 2π≈2.94792\pi \approx 2.94792π≈2.9479 * 5201314 mod 2π≈5.24412\pi \approx 5.24412π≈5.2441 ===== - 第 I 象限:0 ~ π/2 ≈ 0 ~ 1.5708 ===== * 第 II 象限:π/2 ~ π ≈ 1.5708 ~ 3.1416 * 第 III 象限:π ~ 3π/2 ≈ 3.1416 ~ 4.7124 * 第 IV 象限:3π/2 ~ 2π ≈ 4.7124 ~ 6.2832 對應: * 114514 → 2.9479 rad ∈ 第 II 象限 * 5201314 → 5.2441 rad ∈ 第 IV 象限 ✅ 結論:114514 落在第 II 象限,5201314 落在第 IV 象限。 所以 cos114514<0\cos114514 < 0cos114514<0,cos5201314>0\cos5201314 > 0cos5201314>0,和之前判斷一致。 ==== ### ==== * 算術綜合風險: Ra=Rs+Rm2R_a = \frac{R_s + R_m}{2}Ra=2Rs+Rm * 幾何綜合風險: Rg=Rs⋅RmR_g = \sqrt{R_s \cdot R_m}Rg=Rs⋅Rm ===== Ra=90/a+a2=?310≈9.4868R_a = \frac{90/a + a}{2} \overset{?}{=} 3\sqrt{10} \approx 9.4868Ra=290/a+a=?310≈9.4868 ===== 寫成方程式: 90/a+a=2⋅9.4868≈18.973690/a + a = 2\cdot 9.4868 \approx 18.973690/a+a=2⋅9.4868≈18.9736 近似算: 90/a+a≈18.9790/a + a \approx 18.9790/a+a≈18.97 * 注意 a∈(0,1),所以 90/a > 90 * a <1 * 所以 90/a + a > 90+0 > 18.97 ❌ 不可能成立,所以選項(1)錯誤 ===== #### ===== # logRm=log2log3log81\log R_m = \frac{\log2}{\log3} \log81logRm=log3log2log81 - log81=log34=4log3\log81 = \log3^4 = 4 \log3log81=log34=4log3 - logRm=(log2/log3)∗4log3=4log2\log R_m = (\log2 / \log3) * 4 \log3 = 4 \log2logRm=(log2/log3)∗4log3=4log2 - Rm=104log2=24=16R_m = 10^{4\log2} = 2^4 =16Rm=104log2=24=16 # 幾何平均: Rg=RsRm=81⋅16=1296=36R_g = \sqrt{R_s R_m} = \sqrt{81 \cdot 16} = \sqrt{1296} =36Rg=RsRm=81⋅16=1296=36 ✔ 正確 ===== - 這是典型「等距 x」三點,指數函數可以過三點 ✔ ===== * 只要函數型態適合(如 y=A·B^x)就行 ✔ 合理 ===== - 幾何事實:一條指數曲線和圓最多交 四點 ===== * 因為指數曲線單調或凸性決定交點數 ❌ 不可能交五點 ===== | | | ===== | --- | --- | | | | | | | | | | | | | | | | 如果你願意,我可以幫你畫一張 三角象限+指數與圓交點示意圖,讓第 8、9 題一眼就能看出答案。 你要我畫嗎?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)