Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69286a1e-2f50-800a-b685-0647e6b12a18
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== - 按对数期望(平均角度)计算: 每次的期望对数增长 E[lnM]=(2p−1)ln2=(2×0.6−1)ln2=0.2ln2≈0.13863E[\ln M]=(2p-1)\ln2=(2\times0.6-1)\ln2=0.2\ln2\approx0.13863E[lnM]=(2p−1)ln2=(2×0.6−1)ln2=0.2ln2≈0.13863。 因此按均值估算需要的交易次数大约是 ln(100000)/0.13863≈83\ln(100000)/0.13863\approx83ln(100000)/0.13863≈83 次 —— 这是平均所需次数,但概率波动很大(很多路径失败),所以要把成功概率提高到接近 100% 需要远超过 83 次(上面给出的就是那些“高置信度”对应的 n)。 === * 例如:在 n=161n=161n=161 的情况下需要至少 89 次胜利(占比约 55%),在 n=269n=269n=269 时至少 143 次胜利(占比约 53%)。虽然理论上胜率是 60%,但为了保证几乎必然达标,需要较多的冗余交易次数以抵消概率波动。 * 绝对 100% 不可能(因为 p<1 时总有失败概率),所以给出了常见的近似“接近 100%”阈值(90/95/99/99.9/99.99%)。
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)