Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68b970ce-1e04-8005-85da-9f2468b66517
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: μ λ΅: 91\boxed{91}91β === μ λ΅: 91\boxed{91}91β νμ΄μ ν΅μ¬μ βμ μ νμ΄ μ νν 3κ°βλΌλ 쑰건μ λ±λΉμμ΄μ λΆλͺ¨ μκ±° 쑰건μΌλ‘ ν΄μνλ κ²μ λλ€. λ±λΉμμ΄μ an=a1rβnβ1a_n=a_1 r^{\,n-1}anβ=a1βrnβ1λΌ λκ³ , 곡λΉλ₯Ό κΈ°μ½λΆμ r=uvr=\dfrac{u}{v}r=vuβ (u,vβZ,Β gcdβ‘(u,v)=1)(u,v\in\mathbb Z,\ \gcd(u,v)=1)(u,vβZ,Β gcd(u,v)=1)λ‘ μλλ€. μλ ΄νλ―λ‘ β£rβ£<1|r|<1β£rβ£<1, 첫째ν a1>0a_1>0a1β>0μ λλ€. ===== 1) μ μ νμ΄ μ νν 3κ° ===== β β μλ‘ μ°μν 3κ° μ΄λ€ kkkμμ aka_kakβκ° μ μλΌκ³ ν©μλ€. κ·Έ λ€μ ν ak+1=akβ uva_{k+1}=a_k\cdot \dfrac{u}{v}ak+1β=akββ vuβκ° μ μμ΄λ €λ©΄ vβ£akv\mid a_kvβ£akβ, λ€μ ak+2=akβ u2v2a_{k+2}=a_k\cdot\dfrac{u^2}{v^2}ak+2β=akββ v2u2βκ° μ μμ΄λ €λ©΄ v2β£akv^2\mid a_kv2β£akβκ° νμν©λλ€. κ·Έλ¦¬κ³ μ μ νμ΄ λ μ΄μ μκΈ°μ§ μμΌλ €λ©΄ v3β€akv^3\nmid a_kv3β€akβμ¬μΌ ν©λλ€. λ°λΌμ μ μ νμ λ°λ‘ ak,ak+1,ak+2a_k, a_{k+1}, a_{k+2}akβ,ak+1β,ak+2β μ°μ 3κ°λΏμ λλ€. μ΄λ ak=Nv2(NβZβ{0}),ak+1=Nvu,ak+2=Nu2.a_k=Nv^2\quad(N\in\mathbb Z\setminus\{0\}),\quad a_{k+1} = Nvu,\quad a_{k+2}=Nu^2.akβ=Nv2(NβZβ{0}),ak+1β=Nvu,ak+2β=Nu2. μΈ μ μ νμ κ³±μ akak+1ak+2=N3βv3u3.a_k a_{k+1} a_{k+2}=N^3\,v^3u^3.akβak+1βak+2β=N3v3u3. λ¬Έμ μμ κ·Έ κ³±μ΄ 216=63216=6^3216=63μ΄λ―λ‘ β£Nvuβ£=6.(β )|Nvu|=6. \tag{β }β£Nvuβ£=6.(β ) ===== 2) ===== π 1 + π 2 < 10 a 1 β +a 2 β <10 μ‘°κ±΄μ΄ κ³΅λΉμ λΆνΈλ₯Ό κ²°μ 곡λΉκ° μμμ΄λ©΄ λͺ¨λ νμ΄ μμμ΄κ³ , (β )(β )(β )μ κ²°ν©ν΄ 보면 a1r2=6Β βΒ a1+a2=a1(1+r)=6r2(1+r)β₯12a_1 r^2 = 6 \ \Rightarrow\ a_1+a_2=a_1(1+r) = \frac{6}{r^2}(1+r)\ge 12a1βr2=6Β βΒ a1β+a2β=a1β(1+r)=r26β(1+r)β₯12 κ° λμ΄ a1+a2<10a_1+a_2<10a1β+a2β<10μ λͺ¨μμ λλ€. κ·Έλ¬λ―λ‘ κ³΅λΉλ μμμ¬μΌ ν©λλ€. μ μ νμ΄ μ°μ 3κ°λΌλ μ μ κ°μνλ©΄, μμ°μ€λ½κ² μ μ ν μμΉλ a2,a3,a4a_2,a_3,a_4a2β,a3β,a4βκ° λ©λλ€(첫νμ μ μκ° μλ μ μμ). μ΄ κ²½μ° λΆνΈλ (β,+,β)(-,+,-)(β,+,β)λ‘ κ³±μ΄ +++κ° λμ΄ 216216216κ³Ό μΌμΉν©λλ€. μ΄μ r=βuvΒ (0<u<v,Β gcdβ‘(u,v)=1)r=-\dfrac{u}{v}\ (0<u<v,\ \gcd(u,v)=1)r=βvuβΒ (0<u<v,Β gcd(u,v)=1), κ·Έλ¦¬κ³ (β )(β )(β )λ‘λΆν° κ°λ₯ν (u,v,N)(u,v,N)(u,v,N)μ μ°Ύμ΅λλ€. β£Nvuβ£=6|Nvu|=6β£Nvuβ£=6μ΄λ―λ‘ vuvuvuλ 1,2,3,61,2,3,61,2,3,6 μ€ νλ, Β u<v\ u<vΒ u<vλ₯Ό λ§μ‘±ν΄μΌ ν©λλ€. κ°λ₯ν (u,v)(u,v)(u,v)λ (1,2),Β (1,3),Β (2,3),Β (1,6).(1,2),\ (1,3),\ (2,3),\ (1,6).(1,2),Β (1,3),Β (2,3),Β (1,6). μ΄λ a1+a2a_1+a_2a1β+a2βλ₯Ό u,vu,vu,vλ‘ μ§μ μ°λ©΄(μ μ νμ΄ a2,a3,a4a_2,a_3,a_4a2β,a3β,a4βμΌ λ κ³μ°) a1+a2=6βv(vβu)u2.a_1+a_2 =6\,\frac{v(v-u)}{u^2}.a1β+a2β=6u2v(vβu)β. κ° κ²½μ°λ₯Ό λμ νλ©΄ (u,v)=(1,2):6β 2(1)1=12(Γ)(u,v)=(1,3):6β 3(2)1=36(Γ)(u,v)=(1,6):6β 6(5)1=180(Γ)(u,v)=(2,3):6β 3(1)4=184=92(β)\begin{array}{lcl} (u,v)=(1,2): & 6\cdot \dfrac{2(1)}{1} = 12 &(\times)\\[4pt] (u,v)=(1,3): & 6\cdot \dfrac{3(2)}{1} = 36 &(\times)\\[4pt] (u,v)=(1,6): & 6\cdot \dfrac{6(5)}{1} = 180 &(\times)\\[4pt] (u,v)=(2,3): & 6\cdot \dfrac{3(1)}{4} = \dfrac{18}{4}=\dfrac{9}{2} &(\checkmark) \end{array}(u,v)=(1,2):(u,v)=(1,3):(u,v)=(1,6):(u,v)=(2,3):β6β 12(1)β=126β 13(2)β=366β 16(5)β=1806β 43(1)β=418β=29ββ(Γ)(Γ)(Γ)(β)β λ°λΌμ μ μΌνκ² μ±λ¦½νλ κ²μ r=β23.r=-\frac{2}{3}.r=β32β. μ΄λ (β )(β )(β )μμ N=β6vu=β63β 2=β1N=-\dfrac{6}{vu}=-\dfrac{6}{3\cdot2}=-1N=βvu6β=β3β 26β=β1μ΄ λμ΄ a2=Nv2=β9,a3=Nvu=6,a4=Nu2=β4,a_2=Nv^2=-9,\quad a_3=Nvu=6,\quad a_4=Nu^2=-4,a2β=Nv2=β9,a3β=Nvu=6,a4β=Nu2=β4, κ·Έλ¦¬κ³ a1=a2r=β9β2/3=272a_1=\dfrac{a_2}{r}=\dfrac{-9}{-2/3}=\dfrac{27}{2}a1β=ra2ββ=β2/3β9β=227β. κ²μ°νλ©΄ a1+a2=272β9=92<10a_1+a_2=\dfrac{27}{2}-9=\dfrac{9}{2}<10a1β+a2β=227ββ9=29β<10, μ μ νμ μ νν μΈ κ°, κ³±μ (β9)β 6β (β4)=216(-9)\cdot 6\cdot(-4)=216(β9)β 6β (β4)=216μΌλ‘ 쑰건과 μΌμΉν©λλ€. ===== 3) κΈμμ ν© ===== βn=1βan=a11βr=272β1β(β2/3)β=27253=8110.\sum_{n=1}^{\infty} a_n =\frac{a_1}{1-r} =\frac{\dfrac{27}{2}}{\,1-(-2/3)\,} =\frac{\dfrac{27}{2}}{\dfrac{5}{3}} =\frac{81}{10}.n=1βββanβ=1βra1ββ=1β(β2/3)227ββ=35β227ββ=1081β. μ¦ qp=8110\displaystyle \frac{q}{p}=\frac{81}{10}pqβ=1081βμ΄λ―λ‘ p+q=10+81=91p+q=10+81=\boxed{91}p+q=10+81=91βμ λλ€.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)