Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6922876a-7988-8007-9c62-5f71772af6aa
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== Set τ=τ⋆\tau=\tau_\starτ=τ⋆ and abbreviate ψ=ψτ\psi=\psi_\tauψ=ψτ, I⋆=I(τ)=π/τI_\star=I(\tau)=\pi/\tauI⋆=I(τ)=π/τ, λ=λτ=I⋆/4\lambda=\lambda_\tau=I_\star/4λ=λτ=I⋆/4. ===== Define Gn(t):=1n∑i=1nψ(Xi′−t),gQ(t):=\EQ[ψ(X′−t)].G_n(t):=\frac{1}{n}\sum_{i=1}^n \psi(X_i'-t),\qquad g_Q(t):=\E_Q[\psi(X'-t)].Gn(t):=n1i=1∑nψ(Xi′−t),gQ(t):=\EQ[ψ(X′−t)]. The stabilized score map Hn(t):=Gn(t)+λ(t−Xˉ)H_n(t):=G_n(t)+\lambda(t-\bar X)Hn(t):=Gn(t)+λ(t−Xˉ) is strictly decreasing (because GnG_nGn is decreasing and λ>0\lambda>0λ>0 adds a linear drift), with limt→±∞Hn(t)=±∞\lim_{t\to\pm\infty}H_n(t)=\pm\inftylimt→±∞Hn(t)=±∞, hence \eqref{eq:penalized-M-est} has a unique solution. By the mean‑value theorem, there exists a random tˉ\bar ttˉ on the segment between θ\thetaθ and θ^ε\hat\theta_\varepsilonθ^ε such that 0=Hn(θ^ε)−Hn(θ)=(Gn(θ^ε)−Gn(θ))+λ(θ^ε−θ)=−(mn(tˉ)−λ)(θ^ε−θ),0=H_n(\hat\theta_\varepsilon)-H_n(\theta) =\big(G_n(\hat\theta_\varepsilon)-G_n(\theta)\big)+\lambda(\hat\theta_\varepsilon-\theta) =-(m_n(\bar t)-\lambda)(\hat\theta_\varepsilon-\theta),0=Hn(θ^ε)−Hn(θ)=(Gn(θ^ε)−Gn(θ))+λ(θ^ε−θ)=−(mn(tˉ)−λ)(θ^ε−θ), where mn(t):=−Gn′(t)=n−1∑iψ′(Xi′−t)≥0m_n(t):=-G_n'(t)=n^{-1}\sum_i \psi'(X_i'-t)\ge 0mn(t):=−Gn′(t)=n−1∑iψ′(Xi′−t)≥0. Hence \begin{equation}\label{eq:MV-identity} (\lambda+m_n(\bar t))(\hat\theta_\varepsilon-\theta)=G_n(\theta). \end{equation} Add and subtract gQ(θ)g_Q(\theta)gQ(θ) on the right: Gn(θ)=(Gn(θ)−gQ(θ))+gQ(θ).G_n(\theta)=(G_n(\theta)-g_Q(\theta))+g_Q(\theta).Gn(θ)=(Gn(θ)−gQ(θ))+gQ(θ). Therefore \begin{equation}\label{eq:basic-sq} (\hat\theta_\varepsilon-\theta)^2 \ \le\ \frac{2,(G_n(\theta)-g_Q(\theta))^2}{(\lambda+m_n(\bar t))^2} \ +\ \frac{2,g_Q(\theta)^2}{(\lambda+m_n(\bar t))^2}. \end{equation} Since mn(tˉ)≥0m_n(\bar t)\ge 0mn(tˉ)≥0, we have (λ+mn(tˉ))−2≤λ−2=16/I⋆2(\lambda+m_n(\bar t))^{-2}\le \lambda^{-2}=16/I_\star^2(λ+mn(tˉ))−2≤λ−2=16/I⋆2. Taking expectation, \begin{align} \E_Q[(\hat\theta_\varepsilon-\theta)^2] &\le \frac{32}{I_\star^2},\E_Q!\left[(G_n(\theta)-g_Q(\theta))^2\right] * \frac{32}{I_\star^2},g_Q(\theta)^2.\label{eq:two-terms} \end{align} We now bound the two terms separately. \medskip\noindent \emph{(i) Empirical fluctuation term.} By independence, \EQ[(Gn(θ)−gQ(θ))2]=\VarQ(ψ(X′−θ))/n.\E_Q[(G_n(\theta)-g_Q(\theta))^2]=\Var_Q(\psi(X'-\theta))/n.\EQ[(Gn(θ)−gQ(θ))2]=\VarQ(ψ(X′−θ))/n. Lemma \ref{lem:score-moments-correct} gives \EQ[ψ2]≤I⋆+C ε τ−5/2\E_Q[\psi^2]\le I_\star + C\,\varepsilon\,\tau^{-5/2}\EQ[ψ2]≤I⋆+Cετ−5/2; thus \begin{equation}\label{eq:fluctuation} \frac{32}{I_\star^2},\E_Q[(G_n(\theta)-g_Q(\theta))^2] \ \le\ \frac{C}{I_\star^2}\cdot \frac{I_\star + C \varepsilon \tau^{-5/2}}{n} \ \le\ C\Big(\frac{\tau}{n},+,\frac{\varepsilon,\tau^{3/2}}{n}\Big) \ \le\ C,\frac{\tau}{n}, \end{equation} since ε≤12\varepsilon\le \tfrac12ε≤21 and τ≤12\tau\le \tfrac12τ≤21. \medskip\noindent \emph{(ii) Population bias term.} By Lemma \ref{lem:score-moments-correct}, ∣gQ(θ)∣=∣\EQ[ψ]∣≤C1(ετ−3/2+1)|g_Q(\theta)|=|\E_Q[\psi]|\le C_1(\varepsilon\tau^{-3/2}+1)∣gQ(θ)∣=∣\EQ[ψ]∣≤C1(ετ−3/2+1). Hence \begin{equation}\label{eq:bias} \frac{32}{I_\star^2},g_Q(\theta)^2 \ \le\ \frac{C}{I_\star^2},\Big(\varepsilon^2 \tau^{-3}+1\Big) \ =\ C\Big(\varepsilon^2 \tau\ +\ \tau^2\Big). \end{equation} Combining \eqref{eq:two-terms}, \eqref{eq:fluctuation}, \eqref{eq:bias} we conclude that, uniformly over QQQ with W2(Q,μθ)≤εW_2(Q,\mu_\theta)\le \varepsilonW2(Q,μθ)≤ε, \EQ[(θ^ε−θ)2] ≤ C(τn + ε2τ + τ2).\E_Q[(\hat\theta_\varepsilon-\theta)^2]\ \le\ C\left(\frac{\tau}{n}\ +\ \varepsilon^2 \tau\ +\ \tau^2\right).\EQ[(θ^ε−θ)2] ≤ C(nτ + ε2τ + τ2). Finally take τ=τ⋆=ε2/3∧12\tau=\tau_\star=\varepsilon^{2/3}\wedge \tfrac12τ=τ⋆=ε2/3∧21. If ε≤12\varepsilon\le \tfrac12ε≤21, then τ⋆=ε2/3\tau_\star=\varepsilon^{2/3}τ⋆=ε2/3 and the three terms scale as τ⋆n=ε2/3n,ε2τ⋆=ε8/3,τ⋆2=ε4/3.\frac{\tau_\star}{n}=\frac{\varepsilon^{2/3}}{n},\qquad \varepsilon^2\tau_\star=\varepsilon^{8/3},\qquad \tau_\star^2=\varepsilon^{4/3}.nτ⋆=nε2/3,ε2τ⋆=ε8/3,τ⋆2=ε4/3. Since ε8/3≤ε2\varepsilon^{8/3}\le \varepsilon^2ε8/3≤ε2 and ε4/3≤ε2\varepsilon^{4/3}\le \varepsilon^2ε4/3≤ε2 for ε∈(0,1]\varepsilon\in(0,1]ε∈(0,1], we obtain \eqref{eq:IDS-sharp-risk-correct}. (When ε>12\varepsilon>\tfrac12ε>21, the trivial ε2\varepsilon^2ε2 baseline dominates.) □\quad\Box□
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)