Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6905caf3-8140-8008-9ff1-39937c7b92b1
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Legendre 変換で φ=⟨ϕ⟩\varphi=\langle\phi\rangleφ=⟨ϕ⟩、f=⟨iF⟩f=\langle iF\ranglef=⟨iF⟩、χ=⟨ψ⟩\chi=\langle\psi\rangleχ=⟨ψ⟩、χˉ=⟨ψˉ⟩\bar\chi=\langle\bar\psi\rangleχˉ=⟨ψˉ⟩ を導入し ==== Γ[φ,f,χ,χˉ]=W−∫(Jφ+Kf+ηˉ χ+χˉ η).(7)\Gamma[\varphi,f,\chi,\bar\chi] = W-\int(J\varphi +K f+\bar\eta\,\chi+\bar\chi\,\eta). \tag{7}Γ[φ,f,χ,χˉ]=W−∫(Jφ+Kf+ηˉχ+χˉη).(7) (5) を Γ\GammaΓ に書き換えると、SUSY の Zinn–Justin 恒等式(ソースを 0): ∫ddx[δΓδφ(x) χ(x)+δΓδχˉ(x) f(x)]=0.(8)\boxed{ \int d^dx\left[ \frac{\delta\Gamma}{\delta \varphi(x)}\,\chi(x) +\frac{\delta\Gamma}{\delta \bar\chi(x)}\,f(x) \right]=0. } \tag{8}∫ddx[δφ(x)δΓχ(x)+δχˉ(x)δΓf(x)]=0.(8) (8) を 1 回微分して 2 点関数の逆行列の関係を得ると、たとえば運動量空間で ΓϕF(p)=Γψˉψ(p),ΓFF(p)=0,Γϕψ(p)=0,(9)\boxed{ \Gamma_{\phi F}(p)=\Gamma_{\bar\psi\psi}(p),\qquad \Gamma_{FF}(p)=0,\qquad \Gamma_{\phi\psi}(p)=0, } \tag{9}ΓϕF(p)=Γψˉψ(p),ΓFF(p)=0,Γϕψ(p)=0,(9) 従って完全伝播関数も GϕF(p)=Gψˉψ(p),GFF(p)=0,Gϕψ(p)=0.(10)\boxed{ G_{\phi F}(p)=G_{\bar\psi\psi}(p),\qquad G_{FF}(p)=0,\qquad G_{\phi\psi}(p)=0. } \tag{10}GϕF(p)=Gψˉψ(p),GFF(p)=0,Gϕψ(p)=0.(10) (9)(10) は相互作用 VVV が入っても SUSY が保持される限り全次数で成立します(繰り込み後も同型)。 この一組の恒等式が、次元還元の証明の骨格(ボソン線とフェルミオン線の厳密な打ち消し)を与えます。
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)