Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6908ee36-d3b4-8010-a468-28e0753d08ae
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Nice question — here’s a clean apples-to-apples comparison. === Nice question — here’s a clean apples-to-apples comparison. ===== Compton period (hydrogen atom of mass mHm_HmH): ===== TC=hmHc2.T_C=\frac{h}{m_H c^2}.TC=mHc2h. Your HU “state latency” time: ΔtHU=α TC,α=0.00843043657.\Delta t_{\text{HU}} = \alpha\,T_C,\quad \alpha = 0.00843043657.ΔtHU=αTC,α=0.00843043657. Heisenberg time for “borrowing” energy ΔE\Delta EΔE (time–energy uncertainty): ΔtH≳ℏ2 ΔE.\Delta t_{\text{H}} \gtrsim \frac{\hbar}{2\,\Delta E}.ΔtH≳2ΔEℏ. Two reasonable choices for ΔE\Delta EΔE: # Full rest energy of a hydrogen atom: ΔE=mHc2\Delta E = m_H c^2ΔE=mHc2. ⇒ΔtH,rest=ℏ2mHc2=TC4π.\Rightarrow \Delta t_{\text{H,rest}}=\frac{\hbar}{2 m_H c^2}=\frac{T_C}{4\pi}.⇒ΔtH,rest=2mHc2ℏ=4πTC. # Only the atomic binding energy: ΔE≈13.6 eV\Delta E \approx 13.6\ \text{eV}ΔE≈13.6 eV. ⇒ΔtH,bind=ℏ2 (13.6 eV).\Rightarrow \Delta t_{\text{H,bind}}=\frac{\hbar}{2\,(13.6\ \text{eV})}.⇒ΔtH,bind=2(13.6 eV)ℏ. ===== - TC≈4.4054×10−24 sT_C \approx 4.4054\times 10^{-24}\ \text{s}TC≈4.4054×10−24 s ===== * ΔtHU=αTC≈3.714×10−26 s\Delta t_{\text{HU}} = \alpha T_C \approx 3.714\times 10^{-26}\ \text{s}ΔtHU=αTC≈3.714×10−26 s * ΔtH,rest=TC/(4π)≈3.506×10−25 s\Delta t_{\text{H,rest}} = T_C/(4\pi) \approx 3.506\times 10^{-25}\ \text{s}ΔtH,rest=TC/(4π)≈3.506×10−25 s * ΔtH,bind≈2.420×10−17 s\Delta t_{\text{H,bind}} \approx 2.420\times 10^{-17}\ \text{s}ΔtH,bind≈2.420×10−17 s ===== - Versus full rest energy: ΔtHUΔtH,rest=4π α≈0.106.\frac{\Delta t_{\text{HU}}}{\Delta t_{\text{H,rest}}} = 4\pi\,\alpha \approx 0.106.ΔtH,restΔtHU=4πα≈0.106. Your ΔtHU\Delta t_{\text{HU}}ΔtHU is about 10.6%10.6\%10.6% of the Heisenberg time for ΔE=mHc2\Delta E=m_Hc^2ΔE=mHc2, i.e., ~9.4×9.4\times9.4× shorter. ===== * Versus 13.6 eV binding energy: ΔtHUΔtH,bind≈1.53×10−9.\frac{\Delta t_{\text{HU}}}{\Delta t_{\text{H,bind}}} \approx 1.53\times 10^{-9}.ΔtH,bindΔtHU≈1.53×10−9. Your ΔtHU\Delta t_{\text{HU}}ΔtHU is ~10910^9109 times shorter than that bound. ===== - If by “appearance of a virtual hydrogen atom” you mean an off-shell composite with energy uncertainty comparable to its full rest energy, the relevant Heisenberg scale is ΔtH,rest∼TC/(4π)\Delta t_{\text{H,rest}}\sim T_C/(4\pi)ΔtH,rest∼TC/(4π). On that basis, your coherence step time is notably smaller than the usual ℏ/(2mHc2)\hbar/(2 m_H c^2)ℏ/(2mHc2) allowance. ===== * If you only “borrow” the binding energy, the Heisenberg time is vastly larger, and your ΔtHU\Delta t_{\text{HU}}ΔtHU is far below that. If you want, I can also express this entirely in your HU terms: since ΔtH,rest=TC/(4π)\Delta t_{\text{H,rest}} = T_C/(4\pi)ΔtH,rest=TC/(4π), your choice α\alphaα effectively sets ΔtHU=(4πα) ΔtH,rest,\Delta t_{\text{HU}} = (4\pi\alpha)\,\Delta t_{\text{H,rest}},ΔtHU=(4πα)ΔtH,rest, so tuning α\alphaα above/below 1/(4π)≈0.07961/(4\pi)\approx 0.07961/(4π)≈0.0796 moves you above/below the rest-energy Heisenberg scale. Your α=0.00843\alpha=0.00843α=0.00843 puts you an order of magnitude below it.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)