Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6922876a-7988-8007-9c62-5f71772af6aa
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===== We will need only the first two score moments under QQQ, and in upper‑bound form. ===== (The stabilized estimator \eqref{eq:penalized-M-est} avoids any random‑curvature remainder.) \begin{lemma}[Uniform moment controls]\label{lem:score-moments-correct} Fix τ∈(0,12]\tau\in(0,\tfrac12]τ∈(0,21]. For every QQQ with W2(Q,μθ)≤εW_2(Q,\mu_\theta)\le \varepsilonW2(Q,μθ)≤ε, \begin{align} \big|\E_Q[\psi_\tau]\big| &;\le; C_1\Big(\varepsilon,\tau^{-3/2}+1\Big),\label{eq:bias-score-correct}\ \E_Q[\psi_\tau^2] &;\le; I(\tau);+; C_2,\varepsilon,\tau^{-5/2}.\label{eq:var-score-correct} \end{align} The constants C1,C2C_1,C_2C1,C2 are absolute. In particular, for τ=τ⋆=ε2/3\tau=\tau_\star=\varepsilon^{2/3}τ=τ⋆=ε2/3, ∣\EQ[ψτ⋆]∣ ≲ 1,\EQ[ψτ⋆2] ≲ 1τ⋆ = ε−2/3.\big|\E_Q[\psi_{\tau_\star}]\big|\ \lesssim\ 1,\qquad \E_Q[\psi_{\tau_\star}^2]\ \lesssim\ \frac{1}{\tau_\star}\ =\ \varepsilon^{-2/3}.\EQ[ψτ⋆] ≲ 1,\EQ[ψτ⋆2] ≲ τ⋆1 = ε−2/3. \end{lemma} \begin{proof} We apply Lemma \ref{lem:dyn-W2-correct} with P=μθP=\mu_\thetaP=μθ (so W2(P,Q)≤εW_2(P,Q)\le \varepsilonW2(P,Q)≤ε). For φ=ψτ\varphi=\psi_\tauφ=ψτ, φ′=ψτ′\varphi'=\psi_\tau'φ′=ψτ′ equals the tail‑slope (2τK(0))−2(2\tau K(0))^{-2}(2τK(0))−2 on {∣u∣>12−τ}\{|u|>\tfrac12-\tau\}{∣u∣>21−τ} and 000 on the bulk. For every t∈[0,1]t\in[0,1]t∈[0,1], \EPt[ψτ′(Xt)2] ≤ 1(2τK(0))4 ¶Pt(∣Xt−θ∣>12−τ).\E_{P_t}[\psi_\tau'(X_t)^2]\ \le\ \frac{1}{(2\tau K(0))^4}\,\P_{P_t}\big(|X_t-\theta|>\tfrac12-\tau\big).\EPt[ψτ′(Xt)2] ≤ (2τK(0))41¶Pt(∣Xt−θ∣>21−τ). Since Xt=(1−t)X+tT(X)X_t=(1-t)X+tT(X)Xt=(1−t)X+tT(X) with X∼μθX\sim\mu_\thetaX∼μθ, a point starting at least distance τ\tauτ from the edge must move by at least τ\tauτ to enter the tail. By Markov, ¶(∣T(X)−X∣≥τ)≤\E[(T(X)−X)2]/τ2≤ε2/τ2,\P(|T(X)-X|\ge \tau)\le \E[(T(X)-X)^2]/\tau^2\le \varepsilon^2/\tau^2,¶(∣T(X)−X∣≥τ)≤\E[(T(X)−X)2]/τ2≤ε2/τ2, and ¶μ(∣X−θ∣>12−τ)=2τ\P_\mu(|X-\theta|>\tfrac12-\tau)=2\tau¶μ(∣X−θ∣>21−τ)=2τ. Hence supt∈[0,1]¶Pt(∣Xt−θ∣>12−τ) ≤ 2τ+ε2/τ2.\sup_{t\in[0,1]}\P_{P_t}\big(|X_t-\theta|>\tfrac12-\tau\big)\ \le\ 2\tau+\varepsilon^2/\tau^2.t∈[0,1]sup¶Pt(∣Xt−θ∣>21−τ) ≤ 2τ+ε2/τ2. Therefore ∫01\EPt[ψτ′(Xt)2] dt ≲ τ−4 (2τ+ε2/τ2) ≲ τ−3+ε2τ−6.\int_0^1 \E_{P_t}[\psi_\tau'(X_t)^2]\,dt\ \lesssim\ \tau^{-4}\,(2\tau+\varepsilon^2/\tau^2)\ \lesssim\ \tau^{-3}+\varepsilon^2\tau^{-6}.∫01\EPt[ψτ′(Xt)2]dt ≲ τ−4(2τ+ε2/τ2) ≲ τ−3+ε2τ−6. Applying Lemma \ref{lem:dyn-W2-correct} with P=μθP=\mu_\thetaP=μθ gives ∣\EQ[ψτ]−\Eμθ[ψτ]∣ ≲ ε(τ−3/2+ε τ−3).\big|\E_Q[\psi_\tau]-\E_{\mu_\theta}[\psi_\tau]\big| \ \lesssim\ \varepsilon\left(\tau^{-3/2}+\varepsilon\,\tau^{-3}\right).\EQ[ψτ]−\Eμθ[ψτ] ≲ ε(τ−3/2+ετ−3). A direct symmetry check shows \Eμθ[ψτ]=0\E_{\mu_\theta}[\psi_\tau]=0\Eμθ[ψτ]=0 (the two interior edge contributions cancel), yielding \eqref{eq:bias-score-correct}. For φ=ψτ2\varphi=\psi_\tau^2φ=ψτ2, we have φ′=2ψτψτ′\varphi'=2\psi_\tau\psi_\tau'φ′=2ψτψτ′. Using ψτ′=(2τK(0))−2\psi_\tau'= (2\tau K(0))^{-2}ψτ′=(2τK(0))−2 on tails and 000 on bulk together with \Eνθ,τ[ψτ2]=I(τ)\E_{\nu_{\theta,\tau}}[\psi_\tau^2]=I(\tau)\Eνθ,τ[ψτ2]=I(τ) and the same tail‑mass bound as above, ∫01\EPt[(ψτ2)′(Xt)2] dt ≲ τ−4 ∫01\EPt[ψτ(Xt)2] dt ≲ τ−4 (I(τ)+ε τ−3/2) ≲ τ−5+ε τ−11/2,\int_0^1 \E_{P_t}[(\psi_\tau^2)'(X_t)^2]\,dt \ \lesssim\ \tau^{-4}\,\int_0^1\E_{P_t}[\psi_\tau(X_t)^2]\,dt \ \lesssim\ \tau^{-4}\,\Big(I(\tau)+\varepsilon\,\tau^{-3/2}\Big) \ \lesssim\ \tau^{-5}+\varepsilon\,\tau^{-11/2},∫01\EPt[(ψτ2)′(Xt)2]dt ≲ τ−4∫01\EPt[ψτ(Xt)2]dt ≲ τ−4(I(τ)+ετ−3/2) ≲ τ−5+ετ−11/2, and Lemma \ref{lem:dyn-W2-correct} with P=νθ,τP=\nu_{\theta,\tau}P=νθ,τ (so Eν[ψτ2]=I(τ)E_{\nu}[\psi_\tau^2]=I(\tau)Eν[ψτ2]=I(τ)) yields \eqref{eq:var-score-correct}. \end{proof}
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)