Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69596681-3f7c-8006-b9fd-01d9d8191763
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below is a precise replacement that implements all three requests without ambiguity: === Below is a precise replacement that implements all three requests without ambiguity: # Linear time decay → logarithmic experiment accumulation # Discrete experiment layers (finite NNN, not continuous ttt) # Optimal experiment stopping rule derived analytically from the 4D geometry Everything is analytic, deterministic, and journal-uploadable as a standalone <code>.tikz</code>. ==== Replace linear decay with log-experiment accumulation: ==== Let n∈N0n\in\mathbb{N}_0n∈N0 be the experiment count. Define the effective tightening factor κ(n)≡1−αlog (1+n/n0),0<α<1, n0>0,\kappa(n) \equiv 1-\alpha \log\!\bigl(1+n/n_0\bigr), \quad 0<\alpha<1,\; n_0>0,κ(n)≡1−αlog(1+n/n0),0<α<1,n0>0, with the constraint κ(n)≥0\kappa(n)\ge 0κ(n)≥0. Naive tolerance with accumulation τnaive(p,τ0,n)=τ0 2−p κ(n).\tau_{\text{naive}}(p,\tau_0,n)=\tau_0\,2^{-p}\,\kappa(n).τnaive(p,τ0,n)=τ02−pκ(n). IR-fixed-point tolerance (time-invariant) τIR(p,τ0)=τ\''+(τ0−τ\'')2−p,τ\''≥∣r∣max.\tau_{\text{IR}}(p,\tau_0)=\tau^\''+(\tau_0-\tau^\'')2^{-p},\quad \tau^\''\ge |r|_{\max}.τIR(p,τ0)=τ\''+(τ0−τ\'')2−p,τ\*≥∣r∣max. Collapse condition τ(p,τ0,n)<∣r∣max.\tau(p,\tau_0,n)<|r|_{\max}.τ(p,τ0,n)<∣r∣max. ==== File: precision_phase_4D_logaccum_discrete.tikz ==== <syntaxhighlight lang="latex">%========================================================== % Standalone TikZ / PGFPlots % 4D Projection with log-experiment accumulation % Discrete experiment layers %========================================================== \documentclass[tikz,border=2mm]{standalone} \usepackage{pgfplots} \pgfplotsset{compat=1.18} \begin{document} \begin{tikzpicture} % --------- PARAMETERS (FROZEN) ---------- \def\rmax{0.9} \def\taustar{0.9} \def\alpha{0.25} \def\nzero{5} % n0 in log accumulation % Discrete experiment layers \def\nset{{0,2,5,10,20}} \begin{axis}[ view={135}{30}, width=14cm, height=9cm, xlabel={precision index $p$}, ylabel={initial tolerance $\tau_0$}, zlabel={tolerance $\tau(p,\tau_0,n)$}, xmin=0, xmax=6, ymin=1, ymax=6, zmin=1e-3, zmax=6, zmode=log, grid=both, legend style={at={(0.02,0.98)},anchor=north west} ] % --------- COLLAPSE PLANE ---------- \addplot3[ surf, opacity=0.25, draw=none, domain=0:6, y domain=1:6 ]{\rmax}; \addlegendentry{$\tau=|r|_{\max}$} % --------- DISCRETE NAIVE SURFACES (LOG ACCUMULATION) ---------- \foreach \n in \nset { % kappa(n) = 1 - alpha * ln(1+n/n0) \pgfmathsetmacro{\kappa}{max(0,1-\alpha*ln(1+\n/\nzero))} \addplot3[ surf, opacity=0.85, domain=0:6, y domain=1:6, samples=25, samples y=25 ] {y '' 2^(-x) '' \kappa}; \addlegendentry{$\tau_{\mathrm{naive}}(n=\n)$} } % --------- IR FIXED-POINT SURFACE ---------- \addplot3[ surf, opacity=0.35, domain=0:6, y domain=1:6, samples=25, samples y=25 ]{\taustar + (y-\taustar)*2^(-x)}; \addlegendentry{$\tau_{\mathrm{IR}}$} \end{axis} \end{tikzpicture} \end{document} </syntaxhighlight> What this shows: stacked 3D surfaces for discrete experiment counts n={0,2,5,10,20}n=\{0,2,5,10,20\}n={0,2,5,10,20}. As nnn increases, naive surfaces sink logarithmically; IR surface remains invariant. ==== Solve τnaive(p,τ0,n)=∣r∣max\tau_{\text{naive}}(p,\tau_0,n)=|r|_{\max}τnaive(p,τ0,n)=∣r∣max: ==== τ0 2−p κ(n)=∣r∣max⇒p\*(τ0,n)=log2 (τ0 κ(n)∣r∣max).\tau_0\,2^{-p}\,\kappa(n)=|r|_{\max} \quad\Rightarrow\quad p^\''(\tau_0,n)=\log_2\!\left(\frac{\tau_0\,\kappa(n)}{|r|_{\max}}\right).τ02−pκ(n)=∣r∣max⇒p\''(τ0,n)=log2(∣r∣maxτ0κ(n)). Existence condition κ(n)>0 ⟺ n<nmaxwherenmax=n0(e1/α−1).\kappa(n)>0 \iff n < n_{\max} \quad\text{where}\quad n_{\max}=n_0\bigl(e^{1/\alpha}-1\bigr).κ(n)>0⟺n<nmaxwherenmax=n0(e1/α−1). Beyond nmaxn_{\max}nmax, collapse is immediate for any p>0p>0p>0. ==== Define the certification horizon PPP (maximum required precision). To avoid collapse up to PPP, require: ==== τ0 2−P κ(n) ≥ ∣r∣max.\tau_0\,2^{-P}\,\kappa(n)\;\ge\;|r|_{\max}.τ02−Pκ(n)≥∣r∣max. Solve for the maximum admissible experiment count: n ≤ n0 [exp (1α(1−∣r∣maxτ02P))−1]\boxed{ n \;\le\; n_0\!\left[ \exp\!\left(\frac{1}{\alpha}\left(1-\frac{|r|_{\max}}{\tau_0}2^{P}\right)\right)-1 \right] }n≤n0[exp(α1(1−τ0∣r∣max2P))−1] This yields the optimal stopping rule: : ===== - Each additional experiment tightens tolerance logarithmically, not linearly. ===== * There is a finite experiment budget compatible with a given precision target. * Exceeding it guarantees collapse regardless of further data quality. ==== For IR-fixed-point scaling: ==== infpτIR(p,τ0)=τ\''≥∣r∣max⇒No stopping required.\inf_p \tau_{\mathrm{IR}}(p,\tau_0)=\tau^\''\ge |r|_{\max} \quad\Rightarrow\quad \boxed{\text{No stopping required.}}pinfτIR(p,τ0)=τ\*≥∣r∣max⇒No stopping required. Experiments do not erode viability. ==== κ(n)=1−αlog(1+n/n0),p\*(τ0,n)=log2 (τ0κ(n)∣r∣max),nmax=n0(e1/α−1),nstop(P)=n0 [exp (1α(1−∣r∣maxτ02P))−1].\boxed{ ==== \begin{aligned} \kappa(n)&=1-\alpha\log(1+n/n_0),\\ p^\*(\tau_0,n)&=\log_2\!\left(\frac{\tau_0\kappa(n)}{|r|_{\max}}\right),\\ n_{\max}&=n_0(e^{1/\alpha}-1),\\ n_{\text{stop}}(P)&=n_0\!\left[\exp\!\left(\frac{1}{\alpha}\left(1-\frac{|r|_{\max}}{\tau_0}2^{P}\right)\right)-1\right]. \end{aligned} }κ(n)p\*(τ0,n)nmaxnstop(P)=1−αlog(1+n/n0),=log2(∣r∣maxτ0κ(n)),=n0(e1/α−1),=n0[exp(α1(1−τ0∣r∣max2P))−1]. These bounds are read directly from the 4D geometry; no simulations are used. If you want next, I can: * add isocurves of nstopn_{\text{stop}}nstop to the plot, * include a decision-flow appendix (when to stop vs refine), * or provide a formal theorem + proof block for the stopping rule. © Robert R. Frost 2026-01-03
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)