Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69286a1e-2f50-800a-b685-0647e6b12a18
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== - 场景 A(×2/×0.5,p=0.5)是个“对数公平”(E[lnM]≈0E[\ln M]\approx0E[lnM]≈0)的例子:长期没有净趋向,但短期内有小概率极端表现,100 次内约 4.4% 有机会把 10U 拉到 1,000,000U。注意这并不等于“期望收益高”——它只是表示“在一些幸运路径上可以实现”,多数路径会失败或波动剧烈。 ==== * 场景 B 和 C 显示:单次大奖倍数不能弥补低胜率和严重亏损 —— 虽然赢一次涨很多,但输得也快且概率高,整体成功概率几乎为 0。 * 场景 D 表明:如果每次亏损只是小幅(例如×0.8),而胜率又高(0.6)且允许大量交易(500 次),几何增长会产生几乎确定的成功概率(但现实中手续费、爆仓、资金限制、市场关联性会大幅影响该结论)。 * 场景 E(17 次连续×2)强调“全胜策略”极不现实:即便胜率 50%,也要 17 连胜,概率极低(7.6e-6)。
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)