Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69596681-3f7c-8006-b9fd-01d9d8191763
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below is a standalone, journal-uploadable .tikz file that adds a 4D projection by encoding time / experiment count as a… === Below is a standalone, journal-uploadable <code>.tikz</code> file that adds a 4D projection by encoding time / experiment count as a parametric dimension (color + layered contours), while remaining pure PGFPlots, analytic, deterministic, and self-contained. Design choice (explicit): 4D (p,τ0,τ,t)(p,\tau_0,\tau,t)(p,τ0,τ,t) is projected as: * 3D surface: (p,τ0,τ(p,τ0))(p,\tau_0,\tau(p,\tau_0))(p,τ0,τ(p,τ0)) * 4th dimension ttt (time / experiment count) encoded as a continuous color parameter and time-indexed contour slices * No animation, no external files, PRD-safe static figure ==== <syntaxhighlight lang="latex">%========================================================== ==== % Standalone TikZ / PGFPlots file % 4D Projection: (p, tau0, tau, t) %========================================================== \documentclass[tikz,border=2mm]{standalone} \usepackage{pgfplots} \usepackage{pgfplotstable} \pgfplotsset{compat=1.18} \begin{document} \begin{tikzpicture} %========================================================== % GLOBAL PARAMETERS (FROZEN) %========================================================== \def\rmax{0.9} % worst-case residual bound \def\taustar{0.9} % IR fixed point % Time / experiment index t \in [0,1] % Interpretation: cumulative experiment count or refinement epoch %========================================================== % 4D PROJECTION PANEL %========================================================== \begin{axis}[ view={135}{30}, width=14cm, height=9cm, xlabel={precision index $p$}, ylabel={initial tolerance $\tau_0$}, zlabel={tolerance $\tau(p,\tau_0)$}, xmin=0, xmax=6, ymin=1, ymax=6, zmin=1e-3, zmax=6, zmode=log, grid=both, colormap={time}{ rgb255(0cm)=(33,102,172); % early (blue) rgb255(1cm)=(247,247,247); % mid (white) rgb255(2cm)=(178,24,43) % late (red) }, colorbar, colorbar style={ title={$t$ (experiment count / time)}, ticks={0,0.5,1}, ticklabels={early,mid,late} } ] %========================================================== % NAIVE SURFACE WITH TIME MODULATION (COLOR = t) % tau_naive(p,tau0,t) = tau0 '' 2^{-p} '' (1 - 0.3 t) %========================================================== \addplot3[ surf, shader=interp, domain=0:6, y domain=1:6, samples=35, samples y=35, point meta expr={t}, variable=t, variable y=\tauzero ] ({x},{\tauzero},{\tauzero '' 2^(-x) '' (1 - 0.3*t)}); %========================================================== % IR-FIXED-POINT SURFACE (TIME-INVARIANT) %========================================================== \addplot3[ surf, opacity=0.35, domain=0:6, y domain=1:6, samples=30, samples y=30 ] {\taustar + (y - \taustar) * 2^(-x)}; %========================================================== % COLLAPSE PLANE %========================================================== \addplot3[ surf, opacity=0.25, draw=none, domain=0:6, y domain=1:6 ] {\rmax}; %========================================================== % TIME-SLICED p* ISOCURVES (CONTOUR STACK) % p*(tau0,t) = log2(tau0(1-0.3t)/rmax) %========================================================== \foreach \tval in {0.0,0.5,1.0} { \addplot3[ thick, contour gnuplot={ levels={0}, draw color=black } ] {ln((y''(1-0.3''\tval))/\rmax)/ln(2) - x}; } \end{axis} \end{tikzpicture} \end{document} </syntaxhighlight> ==== ### ==== * x=px = px=p : precision index * y=τ0y = \tau_0y=τ0 : initial tolerance * z=τ(p,τ0)z = \tau(p,\tau_0)z=τ(p,τ0) : tolerance flow * Color = ttt : time / experiment count / refinement epoch ===== τnaive(p,τ0,t)=τ0 2−p (1−αt),α=0.3\tau_{\text{naive}}(p,\tau_0,t) ===== = \tau_0\,2^{-p}\,(1-\alpha t),\quad \alpha=0.3τnaive(p,τ0,t)=τ02−p(1−αt),α=0.3 * t=0t=0t=0: early experiments (blue) * t=1t=1t=1: late experiments (red, tighter effective tolerance) * Models cumulative tightening from repeated experiments or meta-analysis IR surface is time-invariant → encodes structural robustness. ==== 1. 4D collapse surface exists - Collapse is a codimension-1 manifold in (p,τ0,t)(p,\tau_0,t)(p,τ0,t) ==== # Time accelerates collapse under naive scaling - p\''(τ0,t)p^\''(\tau_0,t)p\*(τ0,t) decreases monotonically with ttt # IR-fixed-point surface is time-stable - No intersection with collapse plane for any ttt # Certification horizon shrinks with experiment count p\''(t)=log2 (τ0(1−αt)∣r∣max)p^\''(t)=\log_2\!\left(\frac{\tau_0(1-\alpha t)}{|r|_{\max}}\right)p\*(t)=log2(∣r∣maxτ0(1−αt)) ==== - This is a single-file <code>.tikz</code> → upload directly to PRD / APS ==== * No animation (APS-safe) * No external data * Analytic surfaces only * Colorbar explicitly defined ==== • replace linear time decay with log-experiment accumulation ==== • add discrete experiment layers instead of continuous ttt • derive optimal experiment stopping rule from 4D geometry If you want any of those, say which one. © Robert R. Frost 2026-01-03
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)