Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693e3ce6-229c-8008-97dc-ab720cb1f95a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Append the following material it converts the support-sum bound into a total running-time / total coordinate-work bound… === Append the following material (it converts the support-sum bound into a total running-time / total coordinate-work bound, using ∣S⋆∣≤1/ρ|S^\star|\le 1/\rho∣S⋆∣≤1/ρ as in the local-PPR setting). open-problem-fountoulakis22a <syntaxhighlight lang="latex">% ============================================================ \section{Total running time via the sum of supports} We now convert the support-sum bounds into a total work bound for an $\varepsilon$-accurate solution. Throughout, we measure work in a standard \emph{support-sensitive} model: the cost of iteration $k$ is proportional to the number of (stored/updated) nonzeros in the vectors that appear in the update. This is the same model implicitly used when one argues that a method is ``local'' because it only touches $O(1/\rho)$ coordinates per iteration. \subsection{A simple support-sensitive work model} \begin{assumption}[Support-sensitive iteration cost]\label{ass:work_model} There exist absolute constants $c_1,c_2>0$ such that iteration $k$ of \eqref{eq:apg} can be implemented with work \[ \mathrm{work}(k) \;\le\; c_1\,|\supp(y_k)| \;+\; c_2\,|\supp(x_{k+1})|. \] (Any $O(1)$ overhead per iteration can be absorbed into the constants.) \end{assumption} \begin{lemma}[Support of the extrapolated point]\label{lem:supp_y} For all $k\ge 1$, \[ \supp(y_k)\subseteq \supp(x_k)\cup \supp(x_{k-1}), \qquad\text{hence}\qquad |\supp(y_k)| \le |\supp(x_k)|+|\supp(x_{k-1})|. \] \end{lemma} \begin{proof} Coordinatewise, $y_{k,i}=(1+\beta)x_{k,i}-\beta x_{k-1,i}$. Thus if $x_{k,i}=x_{k-1,i}=0$ then $y_{k,i}=0$. \end{proof} \subsection{Total work up to a fixed iteration budget} Define the cumulative work up to $N$ iterations as \[ \mathrm{Work}(N) := \sum_{k=0}^{N-1}\mathrm{work}(k). \] Let \begin{equation}\label{eq:Cspur_def} C_{\rm spur}:=\left(\frac{1+tL}{t\gamma}\right)^2 \left( \frac{2\Delta_0}{\mu} +\frac{4\Delta_0}{\mu}\cdot \frac{(1+\beta)^2 q + \beta^2}{1-q} \right), \end{equation} which is exactly the constant appearing in Theorem~\ref{thm:sum_support_transient}. \begin{corollary}[Work bound up to $N$ iterations]\label{cor:workN} Assume Assumptions~\ref{ass:margin},~\ref{ass:linear_rate}, and~\ref{ass:work_model}. Then for every integer $N\ge 1$, \begin{align} \sum_{k=0}^{N-1} |\supp(x_{k+1})| &\le N|S^\star| + C_{\rm spur},\label{eq:supp_sum_xN}\\ \sum_{k=0}^{N-1} |\supp(y_k)| &\le 2N|S^\star| + 2C_{\rm spur},\label{eq:supp_sum_yN} \end{align} and therefore \begin{equation}\label{eq:workN_bound} \mathrm{Work}(N) \;\le\; O\!\left(N|S^\star| + C_{\rm spur}\right), \end{equation} where the hidden constant depends only on $(c_1,c_2)$. If, moreover, $|S^\star|\le 1/\rho$, then \begin{equation}\label{eq:workN_rho} \mathrm{Work}(N) \;\le\; O\!\left(\frac{N}{\rho} + C_{\rm spur}\right). \end{equation} \end{corollary} \begin{proof} For each $k$ we have $\supp(x_{k+1})\subseteq S^\star \cup A_k$, hence $|\supp(x_{k+1})|\le |S^\star|+|A_k|$. Summing over $k=0,\dots,N-1$ yields $\sum_{k=0}^{N-1} |\supp(x_{k+1})|\le N|S^\star| + \sum_{k=0}^{N-1}|A_k|$. The proof of Theorem~\ref{thm:sum_support_transient} bounds the entire geometric series $\sum_{k=0}^{\infty}|A_k|\le C_{\rm spur}$, which implies \eqref{eq:supp_sum_xN}. Next, Lemma~\ref{lem:supp_y} gives for $k\ge 1$: $|\supp(y_k)|\le |\supp(x_k)|+|\supp(x_{k-1})|$. Summing this for $k=1,\dots,N-1$ and using $y_0=x_0$ yields \eqref{eq:supp_sum_yN}. Finally, combine \eqref{eq:supp_sum_xN}--\eqref{eq:supp_sum_yN} with Assumption~\ref{ass:work_model}. \end{proof} \subsection{Total work to reach $\varepsilon$ accuracy} Assumption~\ref{ass:linear_rate} implies that $F(x_N)-F(x^\star)\le \varepsilon$ once \begin{equation}\label{eq:Neps_def} N \;\ge\; N_\varepsilon := \left\lceil \frac{\log(\Delta_0/\varepsilon)}{\log(1/q)} \right\rceil. \end{equation} \begin{corollary}[Total running time to $\varepsilon$ accuracy]\label{cor:workeps} Assume $|S^\star|\le 1/\rho$ and the hypotheses of Corollary~\ref{cor:workN}. Then the total support-sensitive work to compute an iterate $x_N$ with $F(x_N)-F(x^\star)\le \varepsilon$ is \begin{equation}\label{eq:workeps_general} \mathrm{Work}(N_\varepsilon) \;\le\; O\!\left( \frac{1}{\rho}\cdot\frac{\log(\Delta_0/\varepsilon)}{\log(1/q)} \;+\; C_{\rm spur} \right). \end{equation} With the standard accelerated choice $q\approx 1-\sqrt{\mu/L}$ and step $t=1/L$, this becomes \begin{equation}\label{eq:workeps_simplified} \mathrm{Work}(N_\varepsilon) = O\!\left( \frac{1}{\rho}\sqrt{\frac{L}{\mu}}\,\log\frac{\Delta_0}{\varepsilon} \;+\; \frac{\Delta_0\,L^{5/2}}{\gamma^2\,\mu^{3/2}} \right). \end{equation} In the $\ell_1$-regularized PageRank setting (undirected graph), $L\le 1$ and $\mu=\alpha$. If additionally $\Delta_0\le \alpha/2$ (single-seed case) and we take $t=1$, then \begin{equation}\label{eq:workeps_ppr} \mathrm{Work}(N_\varepsilon) = O\!\left( \frac{1}{\rho\sqrt{\alpha}}\log\frac{1}{\varepsilon} \;+\; \frac{1}{\gamma^2\sqrt{\alpha}} \right), \end{equation} up to the standard constant-factor variants in the accelerated rate. \end{corollary} % ============================================================ </syntaxhighlight>
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)