Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6922876a-7988-8007-9c62-5f71772af6aa
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== We study μθ=\Unif[θ−12,θ+12]\mu_\theta=\Unif[\theta-\tfrac12,\theta+\tfrac12]μθ=\Unif[θ−21,θ+21]. ==== Under IDS we observe X1′,…,Xn′∼i.i.d.QX_1',\dots,X_n'\stackrel{\mathrm{i.i.d.}}{\sim}QX1′,…,Xn′∼i.i.d.Q with W2(Q,μθ)≤εW_2(Q,\mu_\theta)\le \varepsilonW2(Q,μθ)≤ε. Risk is squared error R(θ,θ^)=\EQ[(θ^−θ)2]R(\theta,\hat\theta)=\E_Q[(\hat\theta-\theta)^2]R(θ,θ^)=\EQ[(θ^−θ)2], and \MI(ε;n)=infθ^ supQ: W2(Q,μθ)≤εR(θ,θ^).\M_I(\varepsilon;n)=\inf_{\hat\theta}\ \sup_{Q:\,W_2(Q,\mu_\theta)\le \varepsilon} R(\theta,\hat\theta).\MI(ε;n)=θ^inf Q:W2(Q,μθ)≤εsupR(θ,θ^). ===== Let K(x)=(2π)−1/2e−x2/2K(x)=(2\pi)^{-1/2}e^{-x^2/2}K(x)=(2π)−1/2e−x2/2 denote the standard normal density, SSS its CDF, and fix a smoothing parameter τ∈(0,12]\tau\in(0,\tfrac12]τ∈(0,21]. ===== We define a location family {νθ,τ}θ∈R\{\nu_{\theta,\tau}\}_{\theta\in\R}{νθ,τ}θ∈R by replacing the two edges of the uniform with Gaussian tails; its density is \begin{equation}\label{eq:nu-density-correct} f(x;\theta,\tau)= \begin{cases} 1 & \text{if } |x-\theta|\le \tfrac12-\tau,\[4pt] \dfrac{1}{K(0)},K!\left(\dfrac{|x-\theta|-(\tfrac12-\tau)}{2\tau K(0)}\right) & \text{if } |x-\theta|>\tfrac12-\tau. \end{cases} \end{equation} This density is C1C^1C1, equals 1 on the bulk, and is strictly log‑concave on the two tails. Write ψτ(u) = ∂θlogf(θ+u;θ,τ) = −∂ulogf(θ+u;θ,τ)\psi_\tau(u) \;=\; \partial_\theta \log f(\theta+u;\theta,\tau)\;=\;-\partial_u\log f(\theta+u;\theta,\tau)ψτ(u)=∂θlogf(θ+u;θ,τ)=−∂ulogf(θ+u;θ,τ) for the location score at θ\thetaθ, and ψτ′(u)=−∂u2logf(θ+u;θ,τ)\psi_\tau'(u)=-\partial_u^2\log f(\theta+u;\theta,\tau)ψτ′(u)=−∂u2logf(θ+u;θ,τ). On the bulk {∣u∣≤12−τ}\{|u|\le \tfrac12-\tau\}{∣u∣≤21−τ}, ψτ(u)=0\psi_\tau(u)=0ψτ(u)=0; on each tail ψτ\psi_\tauψτ is linear with constant slope \begin{equation}\label{eq:slope} \psi_\tau'(u)\equiv \frac{1}{(2\tau K(0))^2}=\frac{\pi}{2,\tau^2}\qquad\text{whenever }|u|>\tfrac12-\tau, \end{equation} and ψτ\psi_\tauψτ is continuous across the junctions. ===== We will analyze a strongly‑monotone, hence uniquely solvable, penalized estimating equation that is equivalent, rate‑wise, to the unpenalized root. ===== Let τ⋆:=ε2/3∧12,I(τ):=\Eνθ,τ[ψτ(X−θ)2].\tau_\star:=\varepsilon^{2/3}\wedge \tfrac12,\qquad I(\tau):=\E_{\nu_{\theta,\tau}}\big[\psi_\tau(X-\theta)^2\big].τ⋆:=ε2/3∧21,I(τ):=\Eνθ,τ[ψτ(X−θ)2]. (We will show I(τ)=π/τI(\tau)=\pi/\tauI(τ)=π/τ.) \begin{theorem}[Sharp IDS upper bound]\label{thm:IDS-sharp-correct} Let X1′,…,Xn′∼i.i.d.QX_1',\dots,X_n'\stackrel{\mathrm{i.i.d.}}{\sim}QX1′,…,Xn′∼i.i.d.Q with W2(Q,μθ)≤εW_2(Q,\mu_\theta)\le \varepsilonW2(Q,μθ)≤ε. Fix τ=τ⋆\tau=\tau_\starτ=τ⋆ and define Xˉ=n−1∑i=1nXi′\bar X=n^{-1}\sum_{i=1}^n X_i'Xˉ=n−1∑i=1nXi′. Let θ^ε\hat\theta_\varepsilonθ^ε be the unique solution t∈Rt\in\Rt∈R of the stabilized score equation \begin{equation}\label{eq:penalized-M-est} \frac{1}{n}\sum_{i=1}^n \psi_{\tau}(X_i'-t);+;\lambda_\tau,(t-\bar X);=;0, \qquad \lambda_\tau:=\frac{1}{4},I(\tau)=\frac{\pi}{4\tau}. \end{equation} Then there exists a universal constant C<∞C<\inftyC<∞ such that, for all n≥1n\ge 1n≥1 and ε∈(0,12]\varepsilon\in(0,\tfrac12]ε∈(0,21], \begin{equation}\label{eq:IDS-sharp-risk-correct} \sup_{Q:,W_2(Q,\mu_\theta)\le \varepsilon} \E_Q\big[(\hat\theta_\varepsilon-\theta)^2\big] ;\le; C\left{\frac{\varepsilon^{2/3}}{n};;+;;\varepsilon^2;;+;;\frac{1}{n}\right}. \end{equation} In particular, \MI(ε;n) ≲ ε2/3n ∨ (ε2+1n).\M_I(\varepsilon;n)\;\lesssim\; \frac{\varepsilon^{2/3}}{n}\ \vee\ \Big(\varepsilon^2+\frac{1}{n}\Big).\MI(ε;n)≲nε2/3 ∨ (ε2+n1). Moreover, the same ε2/3/n\varepsilon^{2/3}/nε2/3/n leading term is minimax‑optimal: \MI(ε;n)≳ε2/3/n\M_I(\varepsilon;n)\gtrsim \varepsilon^{2/3}/n\MI(ε;n)≳ε2/3/n (Lemma \ref{lem:info-W2} below and a Cramér–Rao argument). \hfill\qed\hfill\qed\hfill\qed \end{theorem} \begin{remark}[On the clean baseline and on the unpenalized root]\label{rem:clean} Under no shift (ε=0\varepsilon=0ε=0) the optimal clean‑uniform risk is 1/[2(n+1)(n+2)]1/[2(n+1)(n+2)]1/[2(n+1)(n+2)] (midrange estimator). Our bound contains 1/n1/n1/n, which is larger but harmless for the IDS scaling. One can replace Xˉ\bar XXˉ in \eqref{eq:penalized-M-est} by the sample midrange to recover the exact clean‑uniform baseline (this only improves the displayed bound). Finally, the unpenalized root (your original \eqref{eq:M-est}) is obtained by letting λτ↓0\lambda_\tau\downarrow 0λτ↓0. The rate ε2/3/n\varepsilon^{2/3}/nε2/3/n persists; the penalty is used here only to simplify—and make rigorous—the finite‑sample curvature control. \end{remark} The proof of Theorem \ref{thm:IDS-sharp-correct} will rely on three ingredients: # A corrected dynamic W2W_2W2 lemma that controls expectation differences along the 1‑D monotone displacement interpolation. # Exact information and W2W_2W2 geometry of the smoothed model {νθ,τ}\{\nu_{\theta,\tau}\}{νθ,τ}: I(τ)=π/τI(\tau)=\pi/\tauI(τ)=π/τ and W22(μθ,νθ,τ)=c τ3W_2^2(\mu_\theta,\nu_{\theta,\tau})=c\,\tau^3W22(μθ,νθ,τ)=cτ3. # Uniform bounds, over the IDS ball, for the first two score moments under QQQ: EQ[ψτ]E_Q[\psi_\tau]EQ[ψτ] and EQ[ψτ2]E_Q[\psi_\tau^2]EQ[ψτ2]. Crucially, the stabilized estimator \eqref{eq:penalized-M-est} does not require controlling random curvatures mn(t)m_n(t)mn(t), and therefore avoids the problematic sup‑norm bounds that led to incorrect exponents before. We now present these tools and then prove the theorem. ===== \begin{lemma}[Displacement W2W_2W2 control]\label{lem:dyn-W2-correct} ===== Let P,QP,QP,Q be probability laws on R\RR with finite second moments, and TTT the increasing transport map pushing PPP to QQQ. For t∈[0,1]t\in[0,1]t∈[0,1], define Tt(x)=(1−t)x+tT(x)T_t(x)=(1-t)x+tT(x)Tt(x)=(1−t)x+tT(x) and Xt=Tt(X)X_t=T_t(X)Xt=Tt(X) with X∼PX\sim PX∼P; write PtP_tPt for the law of XtX_tXt. For any C1C^1C1 function φ\varphiφ such that ∫01\EPt[φ′(Xt)2] dt<∞\int_0^1 \E_{P_t}[\varphi'(X_t)^2]\,dt<\infty∫01\EPt[φ′(Xt)2]dt<∞, ∣\EQ[φ]−\EP[φ]∣ ≤ (∫01\EPt[φ′(Xt)2] dt)1/2 W2(P,Q).\big|\E_Q[\varphi]-\E_P[\varphi]\big| \;\le\; \Big(\int_0^1 \E_{P_t}[\varphi'(X_t)^2]\,dt\Big)^{1/2}\, W_2(P,Q).\EQ[φ]−\EP[φ]≤(∫01\EPt[φ′(Xt)2]dt)1/2W2(P,Q). \end{lemma} \begin{proof} By the chain rule and the fact that X˙t=T(X)−X\dot X_t=T(X)-XX˙t=T(X)−X, ddt\E[φ(Xt)]=\E[φ′(Xt) (T(X)−X)].\frac{d}{dt}\E[\varphi(X_t)]=\E[\varphi'(X_t)\,(T(X)-X)].dtd\E[φ(Xt)]=\E[φ′(Xt)(T(X)−X)]. Integrating over t∈[0,1]t\in[0,1]t∈[0,1] and using Cauchy–Schwarz in (t,Ω)(t,\Omega)(t,Ω) gives ∣\EQ[φ]−\EP[φ]∣≤(∫01\E[φ′(Xt)2] dt)1/2(∫01\E[(T(X)−X)2] dt)1/2.\big|\E_Q[\varphi]-\E_P[\varphi]\big| \le \Big(\int_0^1 \E[\varphi'(X_t)^2]\,dt\Big)^{1/2} \Big(\int_0^1 \E[(T(X)-X)^2]\,dt\Big)^{1/2}.\EQ[φ]−\EP[φ]≤(∫01\E[φ′(Xt)2]dt)1/2(∫01\E[(T(X)−X)2]dt)1/2. The second factor equals W2(P,Q)W_2(P,Q)W2(P,Q), and \E[φ′(Xt)2]=\EPt[φ′(Z)2]\E[\varphi'(X_t)^2]=\E_{P_t}[\varphi'(Z)^2]\E[φ′(Xt)2]=\EPt[φ′(Z)2]. \end{proof} ===== \begin{lemma}[Information and W2W_2W2 scalings]\label{lem:info-W2} ===== Let ψτ\psi_\tauψτ denote the location score of νθ,τ\nu_{\theta,\tau}νθ,τ. Then, for all θ∈R\theta\in\Rθ∈R and τ∈(0,12]\tau\in(0,\tfrac12]τ∈(0,21], \begin{align} I(\tau)\equiv \E_{\nu_{\theta,\tau}}!\big[\psi_\tau(X-\theta)^2\big]&=\frac{\pi}{\tau},\label{eq:I-tau-correct}\ W_2^2!\left(\mu_\theta,\nu_{\theta,\tau}\right)&=c,\tau^3,\qquad c=\frac{2\left(6-6\sqrt2+\pi\right)}{3\pi}.\label{eq:W2-tau-correct} \end{align} \end{lemma} \begin{proof} On the right tail x≥θ+12−τx\ge \theta+\tfrac12-\taux≥θ+21−τ, write y=x−θ−(12−τ)2τK(0),ψτ(x−θ)=−∂∂xlogf(x;θ,τ)=y2τK(0).y=\frac{x-\theta-(\tfrac12-\tau)}{2\tau K(0)},\qquad \psi_\tau(x-\theta)=-\frac{\partial}{\partial x}\log f(x;\theta,\tau) =\frac{y}{2\tau K(0)}.y=2τK(0)x−θ−(21−τ),ψτ(x−θ)=−∂x∂logf(x;θ,τ)=2τK(0)y. By symmetry (two tails), I(τ)=2∫θ+1/2−τ∞ψτ2 f dx.I(\tau)=2\int_{\theta+1/2-\tau}^\infty \psi_\tau^2\, f\,dx.I(τ)=2∫θ+1/2−τ∞ψτ2fdx. With the change of variables dx=2τK(0) dydx=2\tau K(0)\,dydx=2τK(0)dy and f=(1/K(0))K(y)f=(1/K(0))K(y)f=(1/K(0))K(y), I(τ)=2(2τK(0))2K(0)∫θ+1/2−τ∞K′(y)2/K(y) dx=1τK(0)2∫0∞K′(y)2K(y) dy.I(\tau)=\frac{2}{(2\tau K(0))^2 K(0)}\int_{\theta+1/2-\tau}^\infty K'(y)^2/K(y)\,dx =\frac{1}{\tau K(0)^2}\int_0^\infty \frac{K'(y)^2}{K(y)}\,dy.I(τ)=(2τK(0))2K(0)2∫θ+1/2−τ∞K′(y)2/K(y)dx=τK(0)21∫0∞K(y)K′(y)2dy. Since K′(y)=−yK(y)K'(y)=-yK(y)K′(y)=−yK(y), K′(y)2K(y)=y2K(y)\frac{K'(y)^2}{K(y)}=y^2K(y)K(y)K′(y)2=y2K(y), so ∫0∞y2K(y) dy=12\int_0^\infty y^2K(y)\,dy=\tfrac12∫0∞y2K(y)dy=21. With K(0)=1/2πK(0)=1/\sqrt{2\pi}K(0)=1/2π we obtain I(τ)=π/τI(\tau)=\pi/\tauI(τ)=π/τ. For W2W_2W2, it suffices to compare quantiles: F1−1(q)=θ−1/2+qF_1^{-1}(q)=\theta-1/2+qF1−1(q)=θ−1/2+q (uniform) and, by inverting the right‑tail CDF of νθ,τ\nu_{\theta,\tau}νθ,τ, F2−1(q)=θ+12−τ+2τK(0) S−1 (q−(1−2τ)2τ)for q∈[1−τ,1],F_2^{-1}(q)=\theta+\tfrac12-\tau+2\tau K(0)\,S^{-1}\!\left(\frac{q-(1-2\tau)}{2\tau}\right) \quad\text{for } q\in[1-\tau,1],F2−1(q)=θ+21−τ+2τK(0)S−1(2τq−(1−2τ))for q∈[1−τ,1], with symmetry on the left. A direct computation gives W22(μθ,νθ,τ)=2∫1−τ1 (F1−1−F2−1)2 dq=c τ3,W_2^2(\mu_\theta,\nu_{\theta,\tau}) =2\int_{1-\tau}^1\!\big(F_1^{-1}-F_2^{-1}\big)^2\,dq =c\,\tau^3,W22(μθ,νθ,τ)=2∫1−τ1(F1−1−F2−1)2dq=cτ3, with ccc as claimed (elementary Gaussian integrals). \end{proof} ===== We will need only the first two score moments under QQQ, and in upper‑bound form. ===== (The stabilized estimator \eqref{eq:penalized-M-est} avoids any random‑curvature remainder.) \begin{lemma}[Uniform moment controls]\label{lem:score-moments-correct} Fix τ∈(0,12]\tau\in(0,\tfrac12]τ∈(0,21]. For every QQQ with W2(Q,μθ)≤εW_2(Q,\mu_\theta)\le \varepsilonW2(Q,μθ)≤ε, \begin{align} \big|\E_Q[\psi_\tau]\big| &;\le; C_1\Big(\varepsilon,\tau^{-3/2}+1\Big),\label{eq:bias-score-correct}\ \E_Q[\psi_\tau^2] &;\le; I(\tau);+; C_2,\varepsilon,\tau^{-5/2}.\label{eq:var-score-correct} \end{align} The constants C1,C2C_1,C_2C1,C2 are absolute. In particular, for τ=τ⋆=ε2/3\tau=\tau_\star=\varepsilon^{2/3}τ=τ⋆=ε2/3, ∣\EQ[ψτ⋆]∣ ≲ 1,\EQ[ψτ⋆2] ≲ 1τ⋆ = ε−2/3.\big|\E_Q[\psi_{\tau_\star}]\big|\ \lesssim\ 1,\qquad \E_Q[\psi_{\tau_\star}^2]\ \lesssim\ \frac{1}{\tau_\star}\ =\ \varepsilon^{-2/3}.\EQ[ψτ⋆] ≲ 1,\EQ[ψτ⋆2] ≲ τ⋆1 = ε−2/3. \end{lemma} \begin{proof} We apply Lemma \ref{lem:dyn-W2-correct} with P=μθP=\mu_\thetaP=μθ (so W2(P,Q)≤εW_2(P,Q)\le \varepsilonW2(P,Q)≤ε). For φ=ψτ\varphi=\psi_\tauφ=ψτ, φ′=ψτ′\varphi'=\psi_\tau'φ′=ψτ′ equals the tail‑slope (2τK(0))−2(2\tau K(0))^{-2}(2τK(0))−2 on {∣u∣>12−τ}\{|u|>\tfrac12-\tau\}{∣u∣>21−τ} and 000 on the bulk. For every t∈[0,1]t\in[0,1]t∈[0,1], \EPt[ψτ′(Xt)2] ≤ 1(2τK(0))4 ¶Pt(∣Xt−θ∣>12−τ).\E_{P_t}[\psi_\tau'(X_t)^2]\ \le\ \frac{1}{(2\tau K(0))^4}\,\P_{P_t}\big(|X_t-\theta|>\tfrac12-\tau\big).\EPt[ψτ′(Xt)2] ≤ (2τK(0))41¶Pt(∣Xt−θ∣>21−τ). Since Xt=(1−t)X+tT(X)X_t=(1-t)X+tT(X)Xt=(1−t)X+tT(X) with X∼μθX\sim\mu_\thetaX∼μθ, a point starting at least distance τ\tauτ from the edge must move by at least τ\tauτ to enter the tail. By Markov, ¶(∣T(X)−X∣≥τ)≤\E[(T(X)−X)2]/τ2≤ε2/τ2,\P(|T(X)-X|\ge \tau)\le \E[(T(X)-X)^2]/\tau^2\le \varepsilon^2/\tau^2,¶(∣T(X)−X∣≥τ)≤\E[(T(X)−X)2]/τ2≤ε2/τ2, and ¶μ(∣X−θ∣>12−τ)=2τ\P_\mu(|X-\theta|>\tfrac12-\tau)=2\tau¶μ(∣X−θ∣>21−τ)=2τ. Hence supt∈[0,1]¶Pt(∣Xt−θ∣>12−τ) ≤ 2τ+ε2/τ2.\sup_{t\in[0,1]}\P_{P_t}\big(|X_t-\theta|>\tfrac12-\tau\big)\ \le\ 2\tau+\varepsilon^2/\tau^2.t∈[0,1]sup¶Pt(∣Xt−θ∣>21−τ) ≤ 2τ+ε2/τ2. Therefore ∫01\EPt[ψτ′(Xt)2] dt ≲ τ−4 (2τ+ε2/τ2) ≲ τ−3+ε2τ−6.\int_0^1 \E_{P_t}[\psi_\tau'(X_t)^2]\,dt\ \lesssim\ \tau^{-4}\,(2\tau+\varepsilon^2/\tau^2)\ \lesssim\ \tau^{-3}+\varepsilon^2\tau^{-6}.∫01\EPt[ψτ′(Xt)2]dt ≲ τ−4(2τ+ε2/τ2) ≲ τ−3+ε2τ−6. Applying Lemma \ref{lem:dyn-W2-correct} with P=μθP=\mu_\thetaP=μθ gives ∣\EQ[ψτ]−\Eμθ[ψτ]∣ ≲ ε(τ−3/2+ε τ−3).\big|\E_Q[\psi_\tau]-\E_{\mu_\theta}[\psi_\tau]\big| \ \lesssim\ \varepsilon\left(\tau^{-3/2}+\varepsilon\,\tau^{-3}\right).\EQ[ψτ]−\Eμθ[ψτ] ≲ ε(τ−3/2+ετ−3). A direct symmetry check shows \Eμθ[ψτ]=0\E_{\mu_\theta}[\psi_\tau]=0\Eμθ[ψτ]=0 (the two interior edge contributions cancel), yielding \eqref{eq:bias-score-correct}. For φ=ψτ2\varphi=\psi_\tau^2φ=ψτ2, we have φ′=2ψτψτ′\varphi'=2\psi_\tau\psi_\tau'φ′=2ψτψτ′. Using ψτ′=(2τK(0))−2\psi_\tau'= (2\tau K(0))^{-2}ψτ′=(2τK(0))−2 on tails and 000 on bulk together with \Eνθ,τ[ψτ2]=I(τ)\E_{\nu_{\theta,\tau}}[\psi_\tau^2]=I(\tau)\Eνθ,τ[ψτ2]=I(τ) and the same tail‑mass bound as above, ∫01\EPt[(ψτ2)′(Xt)2] dt ≲ τ−4 ∫01\EPt[ψτ(Xt)2] dt ≲ τ−4 (I(τ)+ε τ−3/2) ≲ τ−5+ε τ−11/2,\int_0^1 \E_{P_t}[(\psi_\tau^2)'(X_t)^2]\,dt \ \lesssim\ \tau^{-4}\,\int_0^1\E_{P_t}[\psi_\tau(X_t)^2]\,dt \ \lesssim\ \tau^{-4}\,\Big(I(\tau)+\varepsilon\,\tau^{-3/2}\Big) \ \lesssim\ \tau^{-5}+\varepsilon\,\tau^{-11/2},∫01\EPt[(ψτ2)′(Xt)2]dt ≲ τ−4∫01\EPt[ψτ(Xt)2]dt ≲ τ−4(I(τ)+ετ−3/2) ≲ τ−5+ετ−11/2, and Lemma \ref{lem:dyn-W2-correct} with P=νθ,τP=\nu_{\theta,\tau}P=νθ,τ (so Eν[ψτ2]=I(τ)E_{\nu}[\psi_\tau^2]=I(\tau)Eν[ψτ2]=I(τ)) yields \eqref{eq:var-score-correct}. \end{proof} ===== Set τ=τ⋆\tau=\tau_\starτ=τ⋆ and abbreviate ψ=ψτ\psi=\psi_\tauψ=ψτ, I⋆=I(τ)=π/τI_\star=I(\tau)=\pi/\tauI⋆=I(τ)=π/τ, λ=λτ=I⋆/4\lambda=\lambda_\tau=I_\star/4λ=λτ=I⋆/4. ===== Define Gn(t):=1n∑i=1nψ(Xi′−t),gQ(t):=\EQ[ψ(X′−t)].G_n(t):=\frac{1}{n}\sum_{i=1}^n \psi(X_i'-t),\qquad g_Q(t):=\E_Q[\psi(X'-t)].Gn(t):=n1i=1∑nψ(Xi′−t),gQ(t):=\EQ[ψ(X′−t)]. The stabilized score map Hn(t):=Gn(t)+λ(t−Xˉ)H_n(t):=G_n(t)+\lambda(t-\bar X)Hn(t):=Gn(t)+λ(t−Xˉ) is strictly decreasing (because GnG_nGn is decreasing and λ>0\lambda>0λ>0 adds a linear drift), with limt→±∞Hn(t)=±∞\lim_{t\to\pm\infty}H_n(t)=\pm\inftylimt→±∞Hn(t)=±∞, hence \eqref{eq:penalized-M-est} has a unique solution. By the mean‑value theorem, there exists a random tˉ\bar ttˉ on the segment between θ\thetaθ and θ^ε\hat\theta_\varepsilonθ^ε such that 0=Hn(θ^ε)−Hn(θ)=(Gn(θ^ε)−Gn(θ))+λ(θ^ε−θ)=−(mn(tˉ)−λ)(θ^ε−θ),0=H_n(\hat\theta_\varepsilon)-H_n(\theta) =\big(G_n(\hat\theta_\varepsilon)-G_n(\theta)\big)+\lambda(\hat\theta_\varepsilon-\theta) =-(m_n(\bar t)-\lambda)(\hat\theta_\varepsilon-\theta),0=Hn(θ^ε)−Hn(θ)=(Gn(θ^ε)−Gn(θ))+λ(θ^ε−θ)=−(mn(tˉ)−λ)(θ^ε−θ), where mn(t):=−Gn′(t)=n−1∑iψ′(Xi′−t)≥0m_n(t):=-G_n'(t)=n^{-1}\sum_i \psi'(X_i'-t)\ge 0mn(t):=−Gn′(t)=n−1∑iψ′(Xi′−t)≥0. Hence \begin{equation}\label{eq:MV-identity} (\lambda+m_n(\bar t))(\hat\theta_\varepsilon-\theta)=G_n(\theta). \end{equation} Add and subtract gQ(θ)g_Q(\theta)gQ(θ) on the right: Gn(θ)=(Gn(θ)−gQ(θ))+gQ(θ).G_n(\theta)=(G_n(\theta)-g_Q(\theta))+g_Q(\theta).Gn(θ)=(Gn(θ)−gQ(θ))+gQ(θ). Therefore \begin{equation}\label{eq:basic-sq} (\hat\theta_\varepsilon-\theta)^2 \ \le\ \frac{2,(G_n(\theta)-g_Q(\theta))^2}{(\lambda+m_n(\bar t))^2} \ +\ \frac{2,g_Q(\theta)^2}{(\lambda+m_n(\bar t))^2}. \end{equation} Since mn(tˉ)≥0m_n(\bar t)\ge 0mn(tˉ)≥0, we have (λ+mn(tˉ))−2≤λ−2=16/I⋆2(\lambda+m_n(\bar t))^{-2}\le \lambda^{-2}=16/I_\star^2(λ+mn(tˉ))−2≤λ−2=16/I⋆2. Taking expectation, \begin{align} \E_Q[(\hat\theta_\varepsilon-\theta)^2] &\le \frac{32}{I_\star^2},\E_Q!\left[(G_n(\theta)-g_Q(\theta))^2\right] * \frac{32}{I_\star^2},g_Q(\theta)^2.\label{eq:two-terms} \end{align} We now bound the two terms separately. \medskip\noindent \emph{(i) Empirical fluctuation term.} By independence, \EQ[(Gn(θ)−gQ(θ))2]=\VarQ(ψ(X′−θ))/n.\E_Q[(G_n(\theta)-g_Q(\theta))^2]=\Var_Q(\psi(X'-\theta))/n.\EQ[(Gn(θ)−gQ(θ))2]=\VarQ(ψ(X′−θ))/n. Lemma \ref{lem:score-moments-correct} gives \EQ[ψ2]≤I⋆+C ε τ−5/2\E_Q[\psi^2]\le I_\star + C\,\varepsilon\,\tau^{-5/2}\EQ[ψ2]≤I⋆+Cετ−5/2; thus \begin{equation}\label{eq:fluctuation} \frac{32}{I_\star^2},\E_Q[(G_n(\theta)-g_Q(\theta))^2] \ \le\ \frac{C}{I_\star^2}\cdot \frac{I_\star + C \varepsilon \tau^{-5/2}}{n} \ \le\ C\Big(\frac{\tau}{n},+,\frac{\varepsilon,\tau^{3/2}}{n}\Big) \ \le\ C,\frac{\tau}{n}, \end{equation} since ε≤12\varepsilon\le \tfrac12ε≤21 and τ≤12\tau\le \tfrac12τ≤21. \medskip\noindent \emph{(ii) Population bias term.} By Lemma \ref{lem:score-moments-correct}, ∣gQ(θ)∣=∣\EQ[ψ]∣≤C1(ετ−3/2+1)|g_Q(\theta)|=|\E_Q[\psi]|\le C_1(\varepsilon\tau^{-3/2}+1)∣gQ(θ)∣=∣\EQ[ψ]∣≤C1(ετ−3/2+1). Hence \begin{equation}\label{eq:bias} \frac{32}{I_\star^2},g_Q(\theta)^2 \ \le\ \frac{C}{I_\star^2},\Big(\varepsilon^2 \tau^{-3}+1\Big) \ =\ C\Big(\varepsilon^2 \tau\ +\ \tau^2\Big). \end{equation} Combining \eqref{eq:two-terms}, \eqref{eq:fluctuation}, \eqref{eq:bias} we conclude that, uniformly over QQQ with W2(Q,μθ)≤εW_2(Q,\mu_\theta)\le \varepsilonW2(Q,μθ)≤ε, \EQ[(θ^ε−θ)2] ≤ C(τn + ε2τ + τ2).\E_Q[(\hat\theta_\varepsilon-\theta)^2]\ \le\ C\left(\frac{\tau}{n}\ +\ \varepsilon^2 \tau\ +\ \tau^2\right).\EQ[(θ^ε−θ)2] ≤ C(nτ + ε2τ + τ2). Finally take τ=τ⋆=ε2/3∧12\tau=\tau_\star=\varepsilon^{2/3}\wedge \tfrac12τ=τ⋆=ε2/3∧21. If ε≤12\varepsilon\le \tfrac12ε≤21, then τ⋆=ε2/3\tau_\star=\varepsilon^{2/3}τ⋆=ε2/3 and the three terms scale as τ⋆n=ε2/3n,ε2τ⋆=ε8/3,τ⋆2=ε4/3.\frac{\tau_\star}{n}=\frac{\varepsilon^{2/3}}{n},\qquad \varepsilon^2\tau_\star=\varepsilon^{8/3},\qquad \tau_\star^2=\varepsilon^{4/3}.nτ⋆=nε2/3,ε2τ⋆=ε8/3,τ⋆2=ε4/3. Since ε8/3≤ε2\varepsilon^{8/3}\le \varepsilon^2ε8/3≤ε2 and ε4/3≤ε2\varepsilon^{4/3}\le \varepsilon^2ε4/3≤ε2 for ε∈(0,1]\varepsilon\in(0,1]ε∈(0,1], we obtain \eqref{eq:IDS-sharp-risk-correct}. (When ε>12\varepsilon>\tfrac12ε>21, the trivial ε2\varepsilon^2ε2 baseline dominates.) □\quad\Box□ ===== By Lemma \ref{lem:info-W2}, the least‑favorable τ\tauτ satisfies W2(μθ,νθ,τ)≍τ3/2W_2(\mu_\theta,\nu_{\theta,\tau})\asymp \tau^{3/2}W2(μθ,νθ,τ)≍τ3/2. Choosing τ≍ε2/3\tau\asymp \varepsilon^{2/3}τ≍ε2/3 makes the submodel {νθ,τ}\{\nu_{\theta,\tau}\}{νθ,τ} ε\varepsilonε–close (in W2W_2W2) to μθ\mu_\thetaμθ, while its Fisher information is I(τ)≍τ−1≍ε−2/3I(\tau)\asymp \tau^{-1}\asymp \varepsilon^{-2/3}I(τ)≍τ−1≍ε−2/3. A standard parametric (Cramér–Rao/Le Cam) lower bound thus gives ===== \MI(ε;n) ≳ 1n I(τ) ≍ ε2/3n,\M_I(\varepsilon;n)\ \gtrsim\ \frac{1}{n\,I(\tau)}\ \asymp\ \frac{\varepsilon^{2/3}}{n},\MI(ε;n) ≳ nI(τ)1 ≍ nε2/3, matching the leading term of Theorem \ref{thm:IDS-sharp-correct}.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)