Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6905caf3-8140-8008-9ff1-39937c7b92b1
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 自由理論(または臨界で質量 0)の超グリーン関数 GSG_SGS は === −□S GS(X) = δ(d)(x) δ(θ) δ(θˉ).(6)-\square_S\, G_S(X) \;=\; \delta^{(d)}(x)\,\delta(\theta)\,\delta(\bar\theta). \tag{6}−□SGS(X)=δ(d)(x)δ(θ)δ(θˉ).(6) 回転・SUSY 不変性から GSG_SGS は超距離 R2 = x2+c θˉθ(7)R^2 \;=\; x^2 + c\,\bar\theta\theta \tag{7}R2=x2+cθˉθ(7) (定数 c>0c>0c>0 は規格化で決まる)だけに依存し、 GS(X) ∝ (R2)1−d2.(8)G_S(X) \;\propto\; (R^2)^{1-\frac{d}{2}}. \tag{8}GS(X)∝(R2)1−2d.(8) ここで θˉθ\bar\theta\thetaθˉθ の一次まで(高次は消える)で展開し、θ,θˉ\theta,\bar\thetaθ,θˉ を積分(∫dθˉ dθ θˉθ=1\int d\bar\theta\, d\theta\,\bar\theta\theta=1∫dθˉdθθˉθ=1)すると ∫dθˉ dθ GS(x,θ,θˉ) ∝ ∂(θˉθ)(R2)1−d2∣θˉθ=0 ∝ x−(d−2).(9)\int d\bar\theta\, d\theta\; G_S(x,\theta,\bar\theta) \;\propto\; \partial_{(\bar\theta\theta)} (R^2)^{1-\frac{d}{2}} \Big|_{\bar\theta\theta=0} \;\propto\; x^{-(d-2)}. \tag{9}∫dθˉdθGS(x,θ,θˉ)∝∂(θˉθ)(R2)1−2dθˉθ=0∝x−(d−2).(9) 右辺は'''d−2d-2d−2 次元の質量ゼロ・ラプラシアンのグリーン関数'''に比例します。 ゆえに、SUSY Ward 恒等式を満たす相関関数(SUSY 不変オペレータの相関)は ∫dθˉ dθ ⟨Φ(X1)Φ(X2)⟩ ∝ ⟨ϕ(x1)ϕ(x2)⟩pure in d−2(10)\boxed{\quad \int d\bar\theta\, d\theta\;\langle \Phi(X_1)\Phi(X_2)\rangle \;\propto\; \langle \phi(x_1)\phi(x_2)\rangle_{\text{pure in }d-2} \quad} \tag{10}∫dθˉdθ⟨Φ(X1)Φ(X2)⟩∝⟨ϕ(x1)ϕ(x2)⟩pure in d−2(10) という d→d−2d\to d-2d→d−2 の次元還元を与えます。 相互作用 U(Φ)U(\Phi)U(Φ) を含むときも、SUSY とその Ward 恒等式が保たれる限り、摂動論的には同等の主張が成り立ちます(Feynman 図において、2 つのグラスマン次元が 2 つの実次元に相当する寄与を「相殺」する)。
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)