Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69596681-3f7c-8006-b9fd-01d9d8191763
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below are the analytic bounds derived directly from the contour geometry, stated as inequalities and equivalences. === Below are the analytic bounds derived directly from the contour geometry, stated as inequalities and equivalences. No numerics, no plots, no simulation. Each bound corresponds one-to-one with a geometric feature of the contour surfaces already constructed. ==== Residual bound: ==== ∣r∣max>0|r|_{\max} > 0∣r∣max>0 Naive scaling: τnaive(p,τ0)=τ0 2−p\tau_{\mathrm{naive}}(p,\tau_0)=\tau_0\,2^{-p}τnaive(p,τ0)=τ02−p IR-fixed-point scaling: τIR(p,τ0)=τ\''+(τ0−τ\'') 2−p,τ\''≥∣r∣max\tau_{\mathrm{IR}}(p,\tau_0)=\tau^\''+(\tau_0-\tau^\'')\,2^{-p},\quad \tau^\''\ge |r|_{\max}τIR(p,τ0)=τ\''+(τ0−τ\'')2−p,τ\*≥∣r∣max Collapse condition: COLLAPSE ⟺ τ(p)<∣r∣max\text{COLLAPSE} \iff \tau(p)<|r|_{\max}COLLAPSE⟺τ(p)<∣r∣max ==== From the contour definition: ==== τnaive(p,τ0)=∣r∣max\tau_{\mathrm{naive}}(p,\tau_0)=|r|_{\max}τnaive(p,τ0)=∣r∣max Solve for ppp: p\''(τ0)=log2 (τ0∣r∣max)p^\''(\tau_0)=\log_2\!\left(\frac{\tau_0}{|r|_{\max}}\right)p\*(τ0)=log2(∣r∣maxτ0) ===== - Each contour line in the (p,τ0)(p,\tau_0)(p,τ0) plane is a level set of constant collapse index. ===== * The contour surface is codimension-one and sharp (no thickness). ==== From the surface inequality: ==== τnaive(p,τ0)≥∣r∣max\tau_{\mathrm{naive}}(p,\tau_0)\ge |r|_{\max}τnaive(p,τ0)≥∣r∣max Equivalent to: τ0≥∣r∣max 2p\tau_0 \ge |r|_{\max}\,2^{p}τ0≥∣r∣max2p ===== - Viability occupies the open half-space above the collapse surface. ===== * For fixed τ0\tau_0τ0, viable precision indices satisfy: p≤log2 (τ0∣r∣max)p \le \log_2\!\left(\frac{\tau_0}{|r|_{\max}}\right)p≤log2(∣r∣maxτ0) ==== For any finite τ0\tau_0τ0: ==== limp→∞τnaive(p,τ0)=0\lim_{p\to\infty}\tau_{\mathrm{naive}}(p,\tau_0)=0p→∞limτnaive(p,τ0)=0 Therefore: ∃ p<∞: τnaive(p,τ0)<∣r∣max\exists\,p<\infty:\ \tau_{\mathrm{naive}}(p,\tau_0)<|r|_{\max}∃p<∞: τnaive(p,τ0)<∣r∣max ===== p\''≤⌈log2 (τ0∣r∣max)⌉p^\''\le \left\lceil \log_2\!\left(\frac{\tau_0}{|r|_{\max}}\right)\right\rceilp\*≤⌈log2(∣r∣maxτ0)⌉ ===== This is the tightest possible bound. It is read directly off the contour geometry. ==== For IR scaling: ==== infpτIR(p,τ0)=τ\''\inf_{p}\tau_{\mathrm{IR}}(p,\tau_0)=\tau^\''pinfτIR(p,τ0)=τ\* Thus: τIR(p,τ0)≥∣r∣max ∀p⟺τ\*≥∣r∣max\tau_{\mathrm{IR}}(p,\tau_0)\ge |r|_{\max}\ \forall p \quad\Longleftrightarrow\quad \tau^\''\ge |r|_{\max}τIR(p,τ0)≥∣r∣max ∀p⟺τ\''≥∣r∣max ===== - The IR surface never intersects the collapse plane. ===== '' Therefore no contour p\''p^\''p\'' exists. * Collapse index is undefined (i.e. infinite). ==== From the analytic difference surface: ==== Δτ(p,τ0)=τnaive−τIR=−τ\*(1−2−p)\Delta\tau(p,\tau_0) =\tau_{\mathrm{naive}}-\tau_{\mathrm{IR}} =-\tau^\''\bigl(1-2^{-p}\bigr)Δτ(p,τ0)=τnaive−τIR=−τ\''(1−2−p) ===== −τ\''≤Δτ(p,τ0)<0∀p>0-\tau^\'' \le \Delta\tau(p,\tau_0) < 0 \quad \forall p>0−τ\*≤Δτ(p,τ0)<0∀p>0 ===== ===== - Difference is strictly negative for all p>0p>0p>0. ===== * Independent of τ0\tau_0τ0. * Naive scaling is uniformly dominated by IR scaling. This explains why all signed colormap values are negative. ==== From non-intersection condition: ==== τ\''≥∣r∣max\tau^\'' \ge |r|_{\max}τ\*≥∣r∣max This bound is both necessary and sufficient. '' If τ\''<∣r∣max\tau^\''<|r|_{\max}τ\''<∣r∣max: IR surface intersects collapse plane ⇒ finite collapse. '' If τ\''=∣r∣max\tau^\''=|r|_{\max}τ\''=∣r∣max: IR surface is tangent ⇒ marginal viability. '' If τ\''>∣r∣max\tau^\''>|r|_{\max}τ\''>∣r∣max: strict viability margin. No weaker bound exists. ==== Rearranging the collapse boundary: ==== p≤log2 (τ0∣r∣max)p \le \log_2\!\left(\frac{\tau_0}{|r|_{\max}}\right)p≤log2(∣r∣maxτ0) Equivalently: τ0≥∣r∣max 2p\tau_0 \ge |r|_{\max}\,2^{p}τ0≥∣r∣max2p ===== Each additional bit of precision requires doubling initial tolerance to avoid collapse. ===== This exponential tradeoff is exact, not asymptotic. ==== Given a certification horizon p≤Pp\le Pp≤P, admissible initial tolerances satisfy: ==== τ0≥∣r∣max 2P\tau_0 \ge |r|_{\max}\,2^{P}τ0≥∣r∣max2P Conversely, given τ0\tau_0τ0, the maximum certifiable precision is: Pmax=⌊log2 (τ0∣r∣max)⌋P_{\max}=\left\lfloor \log_2\!\left(\frac{\tau_0}{|r|_{\max}}\right)\right\rfloorPmax=⌊log2(∣r∣maxτ0)⌋ This bound is directly read off the contour surface. ==== p\''(τ0)=log2(τ0/∣r∣max)Viable ⟺ τ0≥∣r∣max2pIR viable ⟺ τ\''≥∣r∣maxΔτ∈[−τ\*,0)Pmax=⌊log2(τ0/∣r∣max)⌋\boxed{ ==== \begin{aligned} p^\*(\tau_0) &= \log_2(\tau_0/|r|_{\max}) \\ \text{Viable} &\iff \tau_0 \ge |r|_{\max}2^{p} \\ \text{IR viable} &\iff \tau^\*\ge |r|_{\max} \\ \Delta\tau &\in[-\tau^\*,0) \\ P_{\max} &= \lfloor\log_2(\tau_0/|r|_{\max})\rfloor \end{aligned} }p\''(τ0)ViableIR viableΔτPmax=log2(τ0/∣r∣max)⟺τ0≥∣r∣max2p⟺τ\''≥∣r∣max∈[−τ\*,0)=⌊log2(τ0/∣r∣max)⌋ These are exact analytic consequences of the contour geometry already plotted. No further assumptions are used. If you want next, I can: * formalize these bounds as lemmas/theorems in the manuscript, * express them as machine-checkable constraints, * or derive optimal tolerance allocation policies under fixed precision budgets. © Robert R. Frost 2026-01-03
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)