Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69596681-3f7c-8006-b9fd-01d9d8191763
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: Below is a journal-ready PGFPlots extension that adds i the IR-fixed-point surface in 3D and ii a signed difference sur… === Below is a journal-ready PGFPlots extension that adds (i) the IR-fixed-point surface in 3D and (ii) a signed difference surface (naive − IR) for direct comparison. Everything is analytic, deterministic, and self-contained. ==== <syntaxhighlight lang="latex">\appendix ==== \section{Three-Dimensional Comparative Surfaces} \begin{figure}[t] \centering \begin{tikzpicture} % ========================================================= % GLOBAL PARAMETERS (FROZEN) % ========================================================= \def\rmax{0.9} % worst-case residual bound \def\taustar{0.9} % IR fixed point (>= r_max) % ========================================================= % PANEL (a): 3D TOLERANCE SURFACES (OVERLAID) % ========================================================= \begin{axis}[ view={135}{30}, width=0.95\linewidth, height=0.55\linewidth, xlabel={precision index $p$}, ylabel={initial tolerance $\tau_0$}, zlabel={tolerance $\tau(p)$}, xmin=0, xmax=6, ymin=1, ymax=6, zmin=1e-3, zmax=6, zmode=log, colormap/viridis, grid=both, legend style={at={(0.02,0.98)},anchor=north west} ] % --- NAIVE SURFACE: τ_naive(p,τ0)=τ0 2^{-p} \addplot3[ surf, opacity=0.85, domain=0:6, y domain=1:6, samples=35, samples y=35 ] {y * 2^(-x)}; \addlegendentry{$\tau_{\mathrm{naive}}(p,\tau_0)$} % --- IR-FIXED-POINT SURFACE: τ_IR(p,τ0)=τ''+(τ0-τ'')2^{-p} \addplot3[ surf, opacity=0.85, domain=0:6, y domain=1:6, samples=35, samples y=35 ] {\taustar + (y - \taustar) * 2^(-x)}; \addlegendentry{$\tau_{\mathrm{IR}}(p,\tau_0)$} % --- COLLAPSE PLANE: τ=|r|max \addplot3[ surf, opacity=0.25, draw=none, domain=0:6, y domain=1:6 ] {\rmax}; \addlegendentry{$\tau=|r|_{\max}$} \end{axis} \end{tikzpicture} \caption{ \textbf{3D tolerance surfaces under precision scaling.} Naive scaling (solid) decays to zero and intersects the collapse plane at finite $p$. IR-fixed-point scaling (solid) saturates at $\tau^\*\ge|r|_{\max}$ and remains viable. } \end{figure} </syntaxhighlight> ==== This surface isolates where and by how much naive scaling violates IR viability. ==== <syntaxhighlight lang="latex">\section{Difference Surface Between Scaling Laws} \begin{figure}[t] \centering \begin{tikzpicture} \begin{axis}[ view={135}{30}, width=0.95\linewidth, height=0.55\linewidth, xlabel={precision index $p$}, ylabel={initial tolerance $\tau_0$}, zlabel={$\Delta\tau(p)=\tau_{\mathrm{naive}}-\tau_{\mathrm{IR}}$}, xmin=0, xmax=6, ymin=1, ymax=6, zmin=-6, zmax=6, colormap/viridis, grid=both, legend style={at={(0.02,0.98)},anchor=north west} ] % --- DIFFERENCE SURFACE (ANALYTIC) \addplot3[ surf, domain=0:6, y domain=1:6, samples=40, samples y=40 ] {(y '' 2^(-x)) - (\taustar + (y - \taustar) '' 2^(-x))}; \addlegendentry{$\Delta\tau(p,\tau_0)$} % --- ZERO PLANE (REFERENCE) \addplot3[ surf, opacity=0.25, draw=none, domain=0:6, y domain=1:6 ] {0}; \addlegendentry{$\Delta\tau=0$} \end{axis} \end{tikzpicture} \caption{ \textbf{Difference surface between naive and IR-fixed-point scaling.} Negative regions indicate where naive scaling undershoots the IR floor, quantifying the structural deficit that induces collapse. } \end{figure} </syntaxhighlight> ==== For reference, the plotted surfaces are: ==== τnaive(p,τ0)=τ0 2−p,τIR(p,τ0)=τ\''+(τ0−τ\'') 2−p,Δτ(p,τ0)=τnaive−τIR=−τ\*(1−2−p)≤0.\begin{aligned} \tau_{\mathrm{naive}}(p,\tau_0) &= \tau_0\,2^{-p},\\ \tau_{\mathrm{IR}}(p,\tau_0) &= \tau^\'' + (\tau_0-\tau^\'')\,2^{-p},\\ \Delta\tau(p,\tau_0) &= \tau_{\mathrm{naive}} - \tau_{\mathrm{IR}} = -\tau^\*\bigl(1-2^{-p}\bigr)\le 0. \end{aligned}τnaive(p,τ0)τIR(p,τ0)Δτ(p,τ0)=τ02−p,=τ\''+(τ0−τ\'')2−p,=τnaive−τIR=−τ\*(1−2−p)≤0. The sign of Δτ\Delta\tauΔτ is independent of τ0\tau_0τ0 and strictly negative for all p>0p>0p>0, proving that naive scaling is uniformly more fragile than IR-fixed-point scaling. ==== <syntaxhighlight lang="latex">\usepackage{tikz} ==== \usepackage{pgfplots} \pgfplotsset{compat=1.18} </syntaxhighlight> ===== • add a signed colormap highlighting Δτ<0\Delta\tau<0Δτ<0 ===== • overlay p\''p^\''p\* isocurves on the difference surface • compress all 3D panels into a single multi-row figure suitable for PRD © Robert R. Frost 2026-01-03
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)