Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68b970ce-1e04-8005-85da-9f2468b66517
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 다음과 같이 두겠습니다. === 다음과 같이 두겠습니다. * PB‾:PC‾:BC‾=7:5:14\overline{PB}:\overline{PC}:\overline{BC}=7:5:\sqrt{14}PB:PC:BC=7:5:14 이므로 PB=7k, PC=5k, BC=14 k\ PB=7k,\ PC=5k,\ BC=\sqrt{14}\,k PB=7k, PC=5k, BC=14k. * △BPC\triangle BPC△BPC에서 ∠BPC=θ\angle BPC=\theta∠BPC=θ라 하면 cosθ=PB2+PC2−BC22⋅PB⋅PC=49+25−142⋅7⋅5=67.\cos\theta=\frac{PB^{2}+PC^{2}-BC^{2}}{2\cdot PB\cdot PC} =\frac{49+25-14}{2\cdot 7\cdot 5}=\frac67.cosθ=2⋅PB⋅PCPB2+PC2−BC2=2⋅7⋅549+25−14=76. 따라서 sinθ=1−(67)2=137\sin\theta=\sqrt{1-\big(\tfrac67\big)^2}=\tfrac{\sqrt{13}}{7}sinθ=1−(76)2=713. * 원 밖의 교점 PPP에 대한 표준 성질로 △BPC∼△DPA\triangle BPC\sim \triangle DPA△BPC∼△DPA. 따라서 어떤 s>1s>1s>1에 대하여 PD=s PB,PA=s PC,AD=s BC.PD=s\,PB,\quad PA=s\,PC,\quad AD=s\,BC.PD=sPB,PA=sPC,AD=sBC. 한편 AB=∣PA−PB∣=∣5s−7∣ k,CD=∣PD−PC∣=∣7s−5∣ kAB=\lvert PA-PB\rvert=\lvert5s-7\rvert\,k,\quad CD=\lvert PD-PC\rvert=\lvert7s-5\rvert\,kAB=∣PA−PB∣=∣5s−7∣k,CD=∣PD−PC∣=∣7s−5∣k. 주어진 AB:CD=1:3AB:CD=1:3AB:CD=1:3에서 ∣5s−7∣∣7s−5∣=13\frac{\lvert5s-7\rvert}{\lvert7s-5\rvert}=\frac13∣7s−5∣∣5s−7∣=31 를 풀면 s=2s=2s=2 (또는 13/1113/1113/11)가 나오며, BC<ADBC<ADBC<AD 및 도형의 배치에 부합하는 해는 s=2s=2s=2입니다. * 그러면 AD=413=s BC=2⋅BCAD=4\sqrt{13}=s\,BC=2\cdot BCAD=413=sBC=2⋅BC이므로 BC=213BC=2\sqrt{13}BC=213. 처음의 BC=14 kBC=\sqrt{14}\,kBC=14k와 맞추면 k=21314k=\dfrac{2\sqrt{13}}{\sqrt{14}}k=14213. 이제 물음의 세 칸을 채우면, # ℓ=AB=∣5s−7∣ k=∣10−7∣ k=3k\ell=AB=\lvert5s-7\rvert\,k=|10-7|\,k=3kℓ=AB=∣5s−7∣k=∣10−7∣k=3k 이므로 (가)=3(\text{가})=3(가)=3. # 닮음비는 1:s=1:21:s=1:21:s=1:2이므로 (나)=2(\text{나})=2(나)=2. # △BPC\triangle BPC△BPC에서 사인법칙으로 R=BC2sinθ=14 k2⋅(13/7)=714 k213=7⋅213213=7,R=\frac{BC}{2\sin\theta} =\frac{\sqrt{14}\,k}{2\cdot(\sqrt{13}/7)} =\frac{7\sqrt{14}\,k}{2\sqrt{13}} =\frac{7\cdot 2\sqrt{13}}{2\sqrt{13}}=7,R=2sinθBC=2⋅(13/7)14k=213714k=2137⋅213=7, 따라서 (다)=7(\text{다})=7(다)=7. 따라서 p+q+r=3+2+7=12p+q+r=3+2+7=12p+q+r=3+2+7=12입니다.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)