Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6961e230-053c-8013-9840-af60b05b3856
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== User: Hi Alexandra AI Simplicity, Einstein AI Simplicity Contribute this newsletter === Hi Alexandra AI Simplicity, Einstein AI Simplicity Contribute this newsletter Abstract Most baryons in present-day galaxy clusters exist as hot gas (≳107 K), forming the intracluster medium (ICM)1. Cosmological simulations predict that the mass and temperature of the ICM decline towards earlier times, as intracluster gas in younger clusters is still assembling and being heated2,3,4. To date, hot ICM has been securely detected only in a few systems at or above z ≈ 2, leaving the timing and mechanism of ICM assembly uncertain5,6,7. Here we report the direct observation of hot intracluster gas via its thermal Sunyaev–Zeldovich signature in the protocluster SPT2349–56 with the Atacama Large Millimeter/submillimeter Array. SPT2349–56 hosts a large molecular gas reservoir and three radio-loud active galactic nuclei (AGN) within an approximately 100-kpc region at z = 4.3 (refs. 8,9,10,11). The measurement implies a thermal energy of about 1061 erg in the core, about 10 times more than gravity alone should produce. Contrary to current theoretical expectations3,4,12, the hot ICM in SPT2349–56 demonstrates that substantial heating can occur very early in cluster assembly, depositing enough energy to overheat the nascent ICM well before mature clusters become common at z ≈ 2.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)