Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/695b957c-ffe8-8008-97fb-d5a6cc3ba798
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== User: 出自112年數A學測單選題6 === 出自112年數A學測單選題6 個人認為大多數的解答,需要分析的情況太多, 導致這題如果這樣解很容易計算錯誤 我認為癥結點在於使用了 C(7,2)當作兩個座標點P,Q的樣本空間 這會導致很難用少量步驟的排列組合技巧, 來把內積=1和=2分出來 因此,個人認為這題要好做, 應該選用P(7,2)=7x6=42(即P,Q有序) 當樣本空間 並使用座標化,令O(0,0,0) 如此一來 # 內積=1 (事件A) n(A)=C(3,1)x( P(4,2) - C(2,1)x2 ) =3x(12-4) = 3x8 = 24 解釋: C(3,1) => x,y,z分量選1位,使得該位P,Q分量都為1 P(4,2) => 把P,Q剩餘2個分量看成可以從 00,01,10,11選出相異2個, 扣除會出現2個分量都是1的情形, 這個可以看成剩下2個分量選1位,即C(2,1)種, 最後一位有2種,因為要相異,所以只需指定其中一位為0,另一位就是1,反之亦然 => P(A)=24/42=4/7 # 內積=2(事件B) n(B)=C(3,2)x2=6 這個我相信大多數人比較好理解,故簡單說明: C(3,2) => 從3個分量取2個出來,都指定為1 然後剩下分量跟先前一樣理由,可以有2種 => n(B)=6/42=7 故期望值=1x4/7+2x2/7=6/7 幫我潤飾一下想法
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)