Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/693b7cce-38f4-800d-92f7-5e56a467bfa7
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: It seems like I can’t do more advanced data analysis right now. === It seems like I can’t do more advanced data analysis right now. Please try again later. Sorry — I hit a limit when trying to run the ABM code in the notebook tool, so I couldn’t execute the expanded simulation and produce live plots/animation here. I can’t retry the execution right now, but I will give you a complete, ready-to-run Python script (the exact implementation I attempted) plus instructions so you can run it locally (or in Colab) and immediately get the CK_depth, g_d(t) diagnostics and the animated network. Copy the code below into a file (e.g., knowledge_abm.py) or a Colab notebook cell and run it. It uses only standard scientific Python libs: numpy, networkx, matplotlib. If you want the GIF output, install Pillow and uncomment the save lines. ===== 1. Save the script below into knowledge_abm.py (or paste into a Jupyter/Colab cell). ===== # Install dependencies if needed: <syntaxhighlight>pip install numpy networkx matplotlib === optional for saving GIFs: === pip install pillow </syntaxhighlight> # Run: <syntaxhighlight>python knowledge_abm.py </syntaxhighlight> In a Jupyter/Colab notebook, the plots and animation will display inline. Running locally will open matplotlib windows; to save the animation you can uncomment the writer line near the bottom of the script. ===== <syntaxhighlight lang="python"># knowledge_abm.py ===== === Expanded ABM with multi-channel knowledge, OCEAN/MBTI/Jung/Hero's Journey, and six-degree attenuation. === import numpy as np import networkx as nx import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import random, math from collections import defaultdict === ---------------- Params ---------------- === N = 30 k_nearest = 4 p_rewire = 0.12 max_degree_depth = 6 dt = 1.0 T = 150 seed = 42 np.random.seed(seed) random.seed(seed) alpha_base = 1.0 alpha_private = 0.5 mutation_err = 0.03 mutation_cre = 0.02 decay_lambda = 0.02 kappa_surprise = 0.6 CK_theta = 0.75 CK_p = 0.85 meta_depth_cap = 4 === ---------------- Network ---------------- === G = nx.watts_strogatz_graph(n=N, k=k_nearest, p=p_rewire, seed=seed) pos = nx.spring_layout(G, seed=seed) === precompute distances capped at max_degree_depth === shortest = dict(nx.all_pairs_shortest_path_length(G)) dist_matrix = np.full((N,N), np.inf) for i in range(N): for j in range(N): d = shortest.get(i, {}).get(j, np.inf) if d <= max_degree_depth: dist_matrix[i,j] = d neighbors_list = [list(G.neighbors(i)) for i in range(N)] === ---------------- Traits ---------------- === O = np.clip(np.random.normal(0.5,0.15,size=N),0,1) C = np.clip(np.random.normal(0.5,0.12,size=N),0,1) E = np.clip(np.random.normal(0.45,0.2,size=N),0,1) A = np.clip(np.random.normal(0.5,0.15,size=N),0,1) N_trait = np.clip(np.random.normal(0.4,0.18,size=N),0,1) mbti_types = [] for i in range(N): e_i = 'E' if E[i] > 0.5 else 'I' mbti_types.append(e_i + random.choice(['S','N']) + random.choice(['T','F']) + random.choice(['J','P'])) archetypes_pool = ['Hero','Mentor','Shadow','Caregiver','Trickster','Explorer'] archetypes = [random.choice(archetypes_pool) for _ in range(N)] hj_stages_pool = ['Ordinary','Call','Refusal','Crossing','Trials','Approach','Crisis','Return'] hj_stage_idx = np.random.randint(0, len(hj_stages_pool), size=N) === trust matrix === Tmat = np.zeros((N,N)) for i in range(N): for j in neighbors_list[i]: Tmat[i,j] = np.clip(0.5 + 0.5*np.random.rand(), 0.01, 0.99) for i in range(N): for j in range(N): if i!=j and Tmat[i,j]==0 and dist_matrix[i,j] < np.inf: Tmat[i,j] = max(0.02, 0.5 '' (1.0 / (1.0 + dist_matrix[i,j])) '' np.random.rand()) contact_freq = np.zeros((N,N)) for i in range(N): for j in neighbors_list[i]: contact_freq[i,j] = np.clip(np.random.rand()*1.2, 0.05, 1.2) === ---------------- States ---------------- === b_public = np.clip(np.random.beta(2,8,size=N),0,1) b_private = np.zeros(N) seeds = np.random.choice(N, size=max(1,N//12), replace=False) for s in seeds: b_private[s] = np.clip(0.8 + 0.15*np.random.rand(), 0, 1) e_state = np.clip(np.random.normal(0.2,0.12,size=N),0,1) n_state = np.clip(np.random.normal(0.3,0.2,size=N),0,1) arousal = np.clip(np.random.normal(0.1,0.08,size=N),0,1) lambda_i = np.clip(np.random.normal(decay_lambda, 0.01, size=N), 0.005, 0.08) === ---------------- Functions ---------------- === def degree_attenuation(i,j,visibility=1.0,alpha=1.2): d = dist_matrix[i,j] if np.isinf(d): return 0.0 if d < 1: d = 1.0 return visibility / (d**alpha) def sharing_probability(sender, recipient): base = -3.2 betaE, betaA, betaC, betaN, betaT, betaF = 2.0, 1.5, 2.0, 3.0, 2.2, 1.0 expr = base + betaE''E[sender] + betaA''A[sender] - betaC''C[sender] + betaT''Tmat[sender,recipient] expr += betaN '' math.tanh(3.0 '' N_trait[sender] * arousal[sender]) expr += betaF * min(contact_freq[sender,recipient],1.0) p = 1.0 / (1.0 + math.exp(-expr)) return np.clip(p,0,1) def mutation_sigma(sender, recipient): err = mutation_err '' (1 - C[sender]) '' (1 - Tmat[sender,recipient]) cre = mutation_cre '' O[sender] '' (1 - A[sender]) return max(1e-6, err + cre) def truncated_message_passing(b_vec, depth=2): m_prev = {(i,j): b_vec[i] for i in range(N) for j in neighbors_list[i]} for d in range(depth): m_next = {} for i in range(N): for j in neighbors_list[i]: incoming = [] weights = [] for k in neighbors_list[i]: if k==j: continue if (k,i) in m_prev: incoming.append(m_prev[(k,i)]) weights.append(Tmat[i,k]*contact_freq[k,i] + 1e-6) if incoming and sum(weights)>0: avg = sum(w*m for w,m in zip(weights,incoming))/sum(weights) smoothed = 0.35''b_vec[i] + 0.65''avg m_next[(i,j)] = smoothed else: m_next[(i,j)] = b_vec[i] m_prev = m_next return m_prev def compute_ck_depth(b_vec, depth_cap=meta_depth_cap, theta=CK_theta, p_frac=CK_p): N_agents = len(b_vec) b_level = {1: b_vec.copy()} for n in range(2, depth_cap+1): msgs = truncated_message_passing(b_level[n-1], depth=2) b_n = np.zeros(N) for i in range(N): inc = [msgs[(k,i)] for k in neighbors_list[i] if (k,i) in msgs] b_n[i] = np.mean(inc) if inc else b_level[n-1][i] b_level[n] = b_n max_n = 0 for n in range(1, depth_cap+1): ok = True for m in range(1,n+1): frac = np.sum(b_level[m] > theta) / N_agents if frac < p_frac: ok = False break if ok: max_n = n else: break return max_n === ---------------- Simulation ---------------- === CK_history = [] g_std_history = [] g_by_deg = defaultdict(list) frames = [] seed_node = np.random.choice(N) b_public[seed_node] = 0.95 for s in np.random.choice(range(N), size=max(1,N//10), replace=False): b_public[s] = np.clip(b_public[s] + 0.1*np.random.rand(),0,1) for t in range(T): CK_history.append(compute_ck_depth(b_public, depth_cap=meta_depth_cap)) g_std_history.append(np.std(b_public)) for d in range(1, max_degree_depth+1): nodes_at_d = [i for i in range(N) if dist_matrix[seed_node,i] == d] g_by_deg[d].append(np.mean(b_public[nodes_at_d]) if nodes_at_d else np.nan) frames.append(b_public.copy()) incoming_inf = np.zeros(N) incoming_w = np.zeros(N) incoming_priv = np.zeros(N) incoming_priv_w = np.zeros(N) incoming_e = np.zeros(N) incoming_e_w = np.zeros(N) incoming_n = np.zeros(N) incoming_n_w = np.zeros(N) for j in range(N): for i in range(N): if i==j: continue Sij = degree_attenuation(i,j,visibility=alpha_base,alpha=1.2) if Sij==0: continue p = sharing_probability(j,i) if dist_matrix[j,i] > 1: p = p * (1.0/(1.0 + dist_matrix[j,i]-1.0)) if np.random.rand() < p: sigma = mutation_sigma(j,i) mutated = b_public[j] + np.random.normal(0, math.sqrt(sigma)) mutated = np.clip(mutated, 0, 1) w = Sij '' Tmat[i,j] '' (contact_freq[j,i] if contact_freq[j,i]>0 else 0.1) incoming_inf[i] += w * mutated incoming_w[i] += w if b_private[j] > 0 and np.random.rand() < (0.15 + 0.6*A[j]): pw = alpha_private '' Sij '' Tmat[i,j] * (1 - C[j]) incoming_priv[i] += pw * b_private[j] incoming_priv_w[i] += pw ew = Sij '' Tmat[i,j] '' (0.5 + 0.5*E[j]) incoming_e[i] += ew * e_state[j] incoming_e_w[i] += ew nw = Sij '' Tmat[i,j] '' (0.3 + 0.7*(1 - abs(hj_stage_idx[j]-hj_stage_idx[i])/len(hj_stages_pool))) incoming_n[i] += nw * n_state[j] incoming_n_w[i] += nw for i in range(N): if incoming_w[i] > 0: avg = incoming_inf[i] / incoming_w[i] strength = min(1.0, incoming_w[i] / (1.0 + incoming_w[i])) b_public[i] += dt '' ( -lambda_i[i]''b_public[i] + strength * (avg - b_public[i]) ) else: b_public[i] += dt '' ( -lambda_i[i]''b_public[i] ) if incoming_priv_w[i] > 0: avgp = incoming_priv[i] / incoming_priv_w[i] stick = 0.2 + 0.6*C[i] b_private[i] = np.clip((1-stick)''b_private[i] + stick''avgp, 0, 1) else: b_private[i] *= (1 - 0.004) if incoming_e_w[i] > 0: avg_e = incoming_e[i] / incoming_e_w[i] e_state[i] += dt '' ( -0.08 '' e_state[i] + 0.6 * (avg_e - e_state[i]) ) else: e_state[i] += dt '' ( -0.08 '' e_state[i] ) if incoming_n_w[i] > 0: avg_n = incoming_n[i] / incoming_n_w[i] n_state[i] += dt '' ( -0.03 '' n_state[i] + 0.4 * (avg_n - n_state[i]) ) else: n_state[i] += dt '' ( -0.02 '' n_state[i] ) surprise = abs((incoming_inf[i]/incoming_w[i]) - b_public[i]) if incoming_w[i]>0 else 0.0 arousal[i] += dt '' ( -0.09''arousal[i] + kappa_surprise * surprise ) arousal[i] = np.clip(arousal[i], 0, 1) b_public[i] = np.clip(b_public[i], 0, 1) e_state[i] = np.clip(e_state[i], 0, 1) n_state[i] = np.clip(n_state[i], 0, 1) # rare rewiring if np.random.rand() < 0.015: node = np.random.choice(N) neighs = list(G.neighbors(node)) if neighs: old = np.random.choice(neighs) candidates = [x for x in range(N) if x!=node and not G.has_edge(node,x)] if candidates: new = np.random.choice(candidates) G.remove_edge(node, old) G.add_edge(node, new) neighbors_list = [list(G.neighbors(i)) for i in range(N)] shortest = dict(nx.all_pairs_shortest_path_length(G)) for i in range(N): for j in range(N): d = shortest.get(i, {}).get(j, np.inf) if d <= max_degree_depth: dist_matrix[i,j] = d else: dist_matrix[i,j] = np.inf === ---------------- Visualization ---------------- === plt.figure(figsize=(8,3)) plt.plot(CK_history) plt.xlabel("Timestep") plt.ylabel("CK depth (bounded)") plt.title("CK depth over time") plt.show() plt.figure(figsize=(8,3)) plt.plot(g_std_history, label="std(b_public)") for d in range(1, max_degree_depth+1): arr = np.array(g_by_deg[d]) if np.all(np.isnan(arr)): continue plt.plot(np.arange(len(arr)), arr, label=f"deg {d}") plt.legend(loc='upper right') plt.xlabel("Timestep") plt.ylabel("Value") plt.title("Diffusion stats") plt.show() fig, ax = plt.subplots(figsize=(6,6)) def update(frame): ax.clear() vals = frame cmap = plt.get_cmap('viridis') nx.draw_networkx_edges(G, pos, alpha=0.25, ax=ax) nx.draw_networkx_nodes(G, pos, node_color=vals, cmap=cmap, vmin=0, vmax=1, ax=ax) ax.set_title("Public belief (node color = b_public)") ax.axis('off') ani = FuncAnimation(fig, update, frames=frames, interval=100, blit=False, repeat=False) plt.show() print("Simulation finished. Final CK depth:", CK_history[-1], "Final std(b_public):", g_std_history[-1]) for i in range(min(8,N)): print(f"A{i}: OCEAN={O[i]:.2f},{C[i]:.2f},{E[i]:.2f},{A[i]:.2f},{N_trait[i]:.2f} MBTI={mbti_types[i]} Archetype={archetypes[i]} HJ={hj_stages_pool[hj_stage_idx[i]]} b_pub={b_public[i]:.2f} b_priv={b_private[i]:.2f} e={e_state[i]:.2f} ar={arousal[i]:.2f}") </syntaxhighlight> ===== - Simulates an ABM with N agents over T timesteps. ===== * Diagnostics plotted: - CK_depth bounded metric vs time (approximate Pinker-style recursion). - g_d(t) global std(b_public) and per-degree mean belief curves from the seed. * Animated network: nodes colored by b_public (public belief) over time so you can visually inspect cascades & rumor paths. * Text summary printing sample agent parameters and final statistics. ===== - Increase N (e.g., 100–500) and use the matrix/ODE variant for scalability (I can produce that next). ===== * Tune alpha_base (visibility), mutation_err, mutation_cre to explore fidelity vs. mutation. * Vary meta_depth_cap, CK_theta, CK_p to change how conservative the CK metric is. * Run multiple trials with different network seeds and compute averages of t_CK(n) (time-to-depth). ===== - Produce a vectorized ODE/matrix implementation that scales to thousands of nodes (fast NumPy linear algebra). ===== * Provide a Unity C# ECS skeleton that maps the ABM to an in-game system using ScriptableObjects and graph DB. * Run parameter sweeps and provide a sensitivity analysis (I can prepare the code; I wasn't able to run it here due to the rate-limit). * Turn this into a Colab-ready notebook with UI sliders to tweak parameters interactively. Pick which next deliverable you want and I’ll prepare it (I’ll not re-run here until you ask me to).
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)