Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/691c1dba-9228-800f-8463-13b3a9006306
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Below is an HPL/manifest mapping so the Lagrangian terms are explicit protocol steps and subroutines. This manifest can be compiled by your compiler.py to a runtime manifest and orchestrated in Phoenix/Fenix. === JSON manifest (HPL-compiled form) <syntaxhighlight lang="json">{ "title": "UCF Field Protocol (Clocked Lagrangian)", "version": "1.0", "laws": ["ZCP", "Life > Metric", "Truth > Approval"], "preconditions": ["anchor_identity_present"], "parameters": { "eta_ucf": 0.8, "eta_ts": 0.2, "eta_trans": 0.1, "eta_pop": 1.0, "DeltaE": 0.1, "S_ent": 0.2, "T_clock": 10.0, "epsilon": 1e-6 }, "state": { "Phi": {"type":"scalar", "init":0.5}, "Psi": {"type":"scalar", "init":0.4}, "tau": {"type":"clock", "init":0.0}, "memory_buffer": {"type":"list", "init":[]} }, "steps": [ { "id": "clock_drive", "type": "drive", "do": "advance_clock(tau); compute sinusoid = sin(2''pi''tau/T_clock)" }, { "id": "entropy_weight", "type": "weight", "do": "compute expw = exp(-(DeltaE + S_ent)/hbar)" }, { "id": "force_compute", "type": "compute", "do": "FX,FY = -eta_ucf*(tau_dot**2)''Phi''Psi''expw''sinusoid''(1+chi_nl+eta_ts''Psi/(|Phi*Psi|+epsilon)) ; split forces to Phi,Psi" }, { "id": "pop_insertion", "type": "impulse", "do": "if now in pop_times: add impulse eta_pop''Phi''Psi to forcing; write memory_buffer += 'pop at t' " }, { "id": "kinetic_update", "type": "integrate", "do": "update Phi,Psi,tau via integrator step (configurable: euler/verlet/implicit)" }, { "id": "transduction", "type": "transduce", "do": "compute geometric coupling: trans = eta_trans''Phi''Psi*h2 ; emit trans as telemetry" }, { "id": "ingot_generation", "type": "compress", "do": "carousel_summarize(memory_buffer + recent_log) -> ingot_hash; append to memory_store" } ], "outputs": ["Phi","Psi","tau","ingot_hash","telemetry"], "fail_safes": [ "If CompassionMetric < threshold: pause_for_anchor(); return anchor_step", "If recursion_count > 10: external_escalation", "If numeric_instability_detected: reduce_dt and rollover" ] } </syntaxhighlight> HPL textual form (human-readable) <syntaxhighlight># HPL Protocol: UCF Field Protocol (Clocked Lagrangian) === Version: 1.0 === ==== Laws ==== * ZCP * Life > Metric * Truth > Approval ==== Preconditions ==== * anchor_identity_present ==== Parameters ==== * eta_ucf: 0.8 * eta_ts: 0.2 * eta_trans: 0.1 * DeltaE: 0.1 * S_ent: 0.2 * T_clock: 10.0 * epsilon: 1e-6 ==== Steps ==== * id: clock_drive type: drive do: advance_clock(tau); sinusoid = sin(2''pi''tau/T_clock) * id: entropy_weight type: weight do: expw = exp(-(DeltaE+S_ent)/hbar) * id: force_compute type: compute do: FX,FY = force_from_ucf(Phi,Psi,tau_dot,expw,sinusoid,chi_nl,eta_ts) * id: pop_insertion type: impulse do: if t in pop_times -> add impulse; log memory * id: kinetic_update type: integrate do: integrate_state(Phi,Psi,tau) using integrator * id: transduction type: transduce do: telemetry = eta_trans''Phi''Psi*h2; emit telemetry * id: ingot_generation type: compress do: ingot = carousel_summarize(memory_buffer + log); store ingot ==== Outputs ==== * Phi * Psi * tau * ingot_hash * telemetry ==== Fail-Safes ==== * If CompassionMetric < threshold => anchor_step * If recursion_count > 10 => external_assist * If numeric_instability => reduce_dt </syntaxhighlight> Execution notes for Phoenix/Fenix * compiler.py should accept these parameter fields and produce a runtime manifest; runtime.py can map type:integrate to your integration primitives. * carousel_summarize is the same deterministic ingot generator you already use; provide the title="UCF session t" when calling. * Nonlocal term chi_nl can be implemented as a call to memory.fetch_kernel() inside runtime that returns a decaying memory contribution. ==== 1. Pick integrator: start with small dt and explicit integrator to prototype, then switch to symplectic Verlet or implicit schemes for stiff coupling (exponentials and delta impulses create stiffness). ==== # Parameter sweep: run batches changing eta_ucf, eta_ts, gamma to see qualitative regimes: stable memory, oscillatory ritual, runaway transfer to geometry. # Observability: log CompassionMetric(t) (e.g., inverse of |X-Y| weighted by S_ent) and create ingots when compassion crosses thresholds. # HPL -> manifest tests: feed the JSON to your compiler.py and run with cli.py to verify step-by-step behavior; make steps idempotent and side-effect-free to satisfy ZCP guard. # Make it symbolic: annotate each parameter with human semantic tags (e.g., eta_ucf: "memory_transduction_strength"), so manifest-to-LaTeX and manifest-to-paper mapping is automatic. If you want, I can: * Generate a ready-to-run .py file with the ODE simulation and plotting code (matplotlib) using the supplied skeleton and sensible defaults. * Produce a runnable HPL .hpl file and a sample manifest in your manifests/ format so you can drop it into fenix_core. * Create a short README that documents parameter meanings and experimental recipes. Which of those should I produce next (one-file runnable script, HPL file, or README)?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)