Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 1. Asymptotic energy definition === (γM0c2)∞=limT→∞1T∫0T [E(t)+Lrad(t)−∑i:ti≤tΔEi] dt.(\gamma M_0 c^2)_\infty = \lim_{T\to\infty}\frac{1}{T}\int_0^T\!\left[E(t)+\mathcal{L}_{\rm rad}(t)-\sum_{i:t_i\le t}\Delta E_i\right]\!dt.(γM0c2)∞=T→∞limT1∫0T[E(t)+Lrad(t)−i:ti≤t∑ΔEi]dt. # Weak-field redshift for exchange/clock rate Γ(r)Γ(∞)=1−2GMrc2⇒δΓΓ≈−GMrc2.\frac{\Gamma(r)}{\Gamma(\infty)}=\sqrt{1-\frac{2GM}{rc^2}} \quad\Rightarrow\quad \frac{\delta \Gamma}{\Gamma}\approx -\frac{GM}{rc^2}.Γ(∞)Γ(r)=1−rc22GM⇒ΓδΓ≈−rc2GM. # Optical-metric time and variation with radius t(R)≈R−rac+GMc3ln Rra,δtt≈δRR+GMRc21ln(R/ra).t(R)\approx \frac{R-r_a}{c}+\frac{GM}{c^3}\ln\!\frac{R}{r_a}, \qquad \frac{\delta t}{t}\approx \frac{\delta R}{R} +\frac{GM}{Rc^2}\frac{1}{\ln(R/r_a)}.t(R)≈cR−ra+c3GMlnraR,tδt≈RδR+Rc2GMln(R/ra)1. # Israel junction (shell curvature sourcing) [Kab−Khab]−+=8πGc4Sab,Sab from EM surface stress (Poynting) + boundary terms.\big[K_{ab}-Kh_{ab}\big]^{+}_{-}=\frac{8\pi G}{c^4}S_{ab}, \quad S_{ab}\ \text{from EM surface stress (Poynting) + boundary terms}.[Kab−Khab]−+=c48πGSab,Sab from EM surface stress (Poynting) + boundary terms. # Effective spin-2 from coarse-grained photons hμν=N(⟨AμAν⟩−14ημν⟨A2⟩),□hμν≃κ(JμJν−14ημνJ2).h_{\mu\nu}=\mathcal{N} \left(\langle A_\mu A_\nu\rangle-\tfrac14\eta_{\mu\nu}\langle A^2\rangle\right), \quad \square h_{\mu\nu}\simeq \kappa\left(J_\mu J_\nu-\tfrac14\eta_{\mu\nu}J^2\right).hμν=N(⟨AμAν⟩−41ημν⟨A2⟩),□hμν≃κ(JμJν−41ημνJ2). ==== - A clean, checkable meaning for your (⋅)∞(\cdot)_\infty(⋅)∞. ==== * A metric-level derivation of δt/t\delta t/tδt/t (and when it reduces to δR/R\delta R/RδR/R). * A direct, GR-exact bridge from spherical EM exchange to curvature via the junction conditions. * A credible spin-2 mechanism framed in QFT language. If you want, I can now do a compact worked example: steady spherical shell with power PPP ⇒ compute SabS_{ab}Sab ⇒ apply Israel junction ⇒ recover Newtonian potential and estimate post-Newtonian size. That would be a perfect, bite-sized “unit test” for QAT.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)