Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== There are two complementary (and standard) GR routes that both tie into your “extra optical path = slower local time” picture. === ==== Schwarzschild (static, spherically symmetric): ==== ds2=−(1−2GMrc2)c2dt2+(1−2GMrc2)−1dr2+r2dΩ2.ds^2 = -\left(1-\frac{2GM}{rc^2}\right)c^2dt^2 + \left(1-\frac{2GM}{rc^2}\right)^{-1}dr^2 + r^2 d\Omega^2.ds2=−(1−rc22GM)c2dt2+(1−rc22GM)−1dr2+r2dΩ2. A local proper time tick dτd\taudτ relates to coordinate time dtdtdt via dτdt=1−2GMrc2 ⇒ Γ(r)Γ(∞)=1−2GMrc2,\frac{d\tau}{dt}=\sqrt{1-\frac{2GM}{rc^2}} \;\;\Rightarrow\;\; \frac{\Gamma(r)}{\Gamma(\infty)}=\sqrt{1-\frac{2GM}{rc^2}},dtdτ=1−rc22GM⇒Γ(∞)Γ(r)=1−rc22GM, if you identify exchange/clock rate Γ\GammaΓ with the local proper rate. For weak fields, δΓΓ≈−GMrc2.\frac{\delta \Gamma}{\Gamma} \approx -\frac{GM}{rc^2}.ΓδΓ≈−rc2GM. This is a metric derivation, not a heuristic. ==== Light in a static metric propagates as if in a refractive index ==== n(r)=11−2GMrc2 ≈ 1+GMrc2.n(r)=\frac{1}{\sqrt{1-\frac{2GM}{rc^2}}}\;\approx\;1+\frac{GM}{rc^2}.n(r)=1−rc22GM1≈1+rc2GM. Coordinate propagation time from rar_ara to rbr_brb along a nearly radial path: t = 1c∫rarbn(r) dr ≈ (rb−ra)c + GMc3ln rbra.t \;=\; \frac{1}{c}\int_{r_a}^{r_b} n(r)\,dr \;\approx\; \frac{(r_b-r_a)}{c} \;+\; \frac{GM}{c^3}\ln\!\frac{r_b}{r_a}.t=c1∫rarbn(r)dr≈c(rb−ra)+c3GMlnrarb. Hence a small change of the outer radius RRR at fixed inner radius rar_ara yields δtt ≈ δRR⏟pure geometry + GMRc2 1ln(R/ra)⏟GR optical correction,\frac{\delta t}{t} \;\approx\; \underbrace{\frac{\delta R}{R}}_{\text{pure geometry}} \;+\; \underbrace{\frac{GM}{Rc^2}\,\frac{1}{\ln(R/r_a)}}_{\text{GR optical correction}},tδt≈pure geometryRδR+GR optical correctionRc2GMln(R/ra)1, to leading order when R≫raR\gg r_aR≫ra. This shows precisely when your δt/t≈δR/R\delta t/t \approx \delta R/Rδt/t≈δR/R holds (flat-space limit or when the GR term is small) and how to add the GR correction systematically. :
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)