Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== ## === Quantum Atom Theory (QAT) models physical change as photon–electron exchange on a 2-D spherical boundary (the electron’s probability shell around a nucleus, or a local EM wavefront). Each absorption/emission event is a discrete “moment of time,” and the Born rule ∣Ψ∣2|\Psi|^2∣Ψ∣2 is viewed as area density on the sphere S2S^2S2 (surface 4πr24\pi r^24πr2). Gravity and inertia are emergent, arising from coherent second-order EM momentum exchange across many such boundaries. The program is to derive standard physics (Maxwell, quantum spectra, and GR curvature) from a bulk + boundary action, with the boundary carrying EM current and stress-energy. ==== - xμ=(ct,x)x^\mu=(ct,\mathbf{x})xμ=(ct,x), metric signature (−+++)(-+++)(−+++). ==== * AμA_\muAμ: EM 4-potential (SI). * Fμν=∂μAν−∂νAμF_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\muFμν=∂μAν−∂νAμ. * ψ\psiψ: electron field (can audit both scalar and spinor variants). * gμνg_{\mu\nu}gμν: spacetime metric (GR part). * habh_{ab}hab: induced metric on the 2-sphere boundary Σ\SigmaΣ at radius r=r0r=r_0r=r0. * uμu^\muuμ: local 4-velocity on Σ\SigmaΣ. * Physical constants: ϵ0, μ0, c, e, h, ℏ\epsilon_0,\ \mu_0,\ c,\ e,\ h,\ \hbarϵ0, μ0, c, e, h, ℏ with ℏ=h/2π\hbar=h/2\piℏ=h/2π. ==== ### ==== Sbulk=∫Md4x −g[−14μ0FμνFμν+Lmatter(ψ,∇ψ,Aμ;gμν)].S_{\text{bulk}}=\int_{\mathcal{M}} \mathrm{d}^4x\,\sqrt{-g}\left[ -\frac{1}{4\mu_0}F_{\mu\nu}F^{\mu\nu} +\mathcal{L}_{\text{matter}}(\psi,\nabla\psi,A_\mu;g_{\mu\nu}) \right].Sbulk=∫Md4x−g[−4μ01FμνFμν+Lmatter(ψ,∇ψ,Aμ;gμν)]. * Scalar matter (simpler audit): Lmatter=−ℏ ℑ{ψ∗∂tψ}−ℏ22m gij(∂i−ieAi/ℏ)ψ∗(∂j+ieAj/ℏ)ψ−V(∣ψ∣2).\mathcal{L}_{\text{matter}}= -\hbar\,\Im\{\psi^*\partial_t\psi\} -\frac{\hbar^2}{2m}\,g^{ij}(\partial_i-ieA_i/\hbar)\psi^*(\partial_j+ieA_j/\hbar)\psi * V(|\psi|^2).Lmatter=−ℏℑ{ψ∗∂tψ}−2mℏ2gij(∂i−ieAi/ℏ)ψ∗(∂j+ieAj/ℏ)ψ−V(∣ψ∣2). * Spinor matter (Dirac variant, optional audit): LDirac=ψˉ(iℏγμDμ−mc)ψ,Dμ=∇μ−i eℏAμ.\mathcal{L}_{\text{Dirac}}=\bar{\psi}\big(i\hbar \gamma^\mu D_\mu - mc\big)\psi ,\quad D_\mu=\nabla_\mu - i\,\tfrac{e}{\hbar}A_\mu .LDirac=ψˉ(iℏγμDμ−mc)ψ,Dμ=∇μ−iℏeAμ. ===== We place a thin shell Σ\SigmaΣ with surface Lagrangian density ===== Sbdy=∫Σdτ d2Ω −γ [−14λΣ fabfab+χˉ(iℏ \slashedDΣ−mΣc)χ+JΣμAμ+ΠabKab].S_{\text{bdy}}=\int_{\Sigma}\mathrm{d}\tau\,\mathrm{d}^2\Omega\,\sqrt{-\gamma}\; \Big[ -\tfrac{1}{4}\lambda_\Sigma\, f_{ab}f^{ab} + \bar{\chi}\big(i\hbar\,\slashed{D}_\Sigma - m_\Sigma c\big)\chi + J^\mu_{\Sigma} A_\mu + \Pi^{ab} K_{ab} \Big].Sbdy=∫Σdτd2Ω−γ[−41λΣfabfab+χˉ(iℏ\slashedDΣ−mΣc)χ+JΣμAμ+ΠabKab]. Meanings to audit: * γ\gammaγ: det. of boundary metric; fabf_{ab}fab is the boundary field strength if a tangential gauge d.o.f. is used (optional). * χ\chiχ: boundary (surface) charge carrier field (can be scalar for first audit). * JΣμJ^\mu_{\Sigma}JΣμ: physical surface current coupling to AμA_\muAμ (minimal coupling). * ΠabKab\Pi^{ab}K_{ab}ΠabKab: coupling to extrinsic curvature KabK_{ab}Kab (gives surface stress-energy), with Πab\Pi^{ab}Πab the canonical momentum conjugate to habh_{ab}hab on Σ\SigmaΣ. : ==== ### ==== Vary AμA_\muAμ in Sbulk+SbdyS_{\text{bulk}}+S_{\text{bdy}}Sbulk+Sbdy: ∇νFμν=μ0(Jbulkμ+JΣμ δΣ),\nabla_\nu F^{\mu\nu} = \mu_0 \big(J^\mu_{\text{bulk}} + J^\mu_{\Sigma}\,\delta_\Sigma\big),∇νFμν=μ0(Jbulkμ+JΣμδΣ), where δΣ\delta_\SigmaδΣ is a delta distribution localized at r=r0r=r_0r=r0. * Audit: derive the usual jump (pillbox) boundary conditions across Σ\SigmaΣ: - n^⋅(D2−D1)=σs \hat{\mathbf{n}}\cdot(\mathbf{D}_2-\mathbf{D}_1)=\sigma_sn^⋅(D2−D1)=σs with σs\sigma_sσs surface charge. - n^×(H2−H1)=Ks \hat{\mathbf{n}}\times(\mathbf{H}_2-\mathbf{H}_1)=\mathbf{K}_sn^×(H2−H1)=Ks with Ks\mathbf{K}_sKs surface current. ===== From varying habh_{ab}hab (or γ\gammaγ) one gets a surface stress tensor ===== Sab=2−γδSbdyδhab=σ uaub+p (hab+uaub)+⋯S_{ab} = \frac{2}{\sqrt{-\gamma}}\frac{\delta S_{\text{bdy}}}{\delta h^{ab}} = \sigma\, u_a u_b + p\, (h_{ab}+u_a u_b) + \cdotsSab=−γ2δhabδSbdy=σuaub+p(hab+uaub)+⋯ and GR’s Israel junction across Σ\SigmaΣ: [Kab]−hab[K]=−8πG Sab.\big[K_{ab}\big] - h_{ab}\big[K\big] = -8\pi G\, S_{ab}.[Kab]−hab[K]=−8πGSab. * Audit: verify that with a physically chosen Sab(σ,p,j)S_{ab}(\sigma,p,j)Sab(σ,p,j) one recovers Newtonian limit outside Σ\SigmaΣ and an effective 1/r21/r^21/r2 force, then extract an effective GGG in terms of σ,p\sigma, pσ,p, and microscopic rates. ===== Gauge: χ→eiαχ, Aμ→Aμ−ℏe∂μα \chi \to e^{i\alpha}\chi,\ A_\mu\to A_\mu - \tfrac{\hbar}{e}\partial_\mu\alphaχ→eiαχ, Aμ→Aμ−eℏ∂μα. ===== * Audit: from boundary Lagrangian, derive conserved surface current jΣa=∂Lbdy∂(∂aχ)(iχ)+c.c.,∇ajΣa=− n^μJleakμ,j^a_{\Sigma}=\frac{\partial \mathcal{L}_{\text{bdy}}}{\partial(\partial_a \chi)}(i\chi) + \text{c.c.}, \qquad \nabla_a j^a_{\Sigma} = -\, \hat{n}_\mu J^\mu_{\text{leak}},jΣa=∂(∂aχ)∂Lbdy(iχ)+c.c.,∇ajΣa=−n^μJleakμ, showing that surface charge is conserved except for photon absorption/emission (leakage term), which is exactly the QAT “moment of time”. ==== ### ==== * Scalar: ϕ(θ,ϕ)=∑ℓ,maℓmYℓm(θ,ϕ)\phi(\theta,\phi)=\sum_{\ell,m} a_{\ell m} Y_{\ell m}(\theta,\phi)ϕ(θ,ϕ)=∑ℓ,maℓmYℓm(θ,ϕ). * Spinor: use spinor spherical harmonics Ωκm\Omega_{\kappa m}Ωκm; spin-½ enforces antiperiodic boundary condition under 2π2\pi2π rotation (needs 4π4\pi4π to return), which QAT interprets as the geometric half-radius feature. Audit: show how the allowed ℓ\ellℓ (or κ\kappaκ) produce discrete energies and how angular momentum quantization recovers the 1/21/21/2 factor when you treat reff=r0/2r_{\text{eff}}=r_0/2reff=r0/2 (half-radius) as the active orbital scale on the boundary. ===== QAT insists on keeping h/2πh/2\pih/2π explicit: ===== ΔE Δt≥h4π\Delta E\, \Delta t \ge \frac{h}{4\pi}ΔEΔt≥4πh (standard is ℏ/2\hbar/2ℏ/2); interpret Δt\Delta tΔt as mean separation of absorption events on Σ\SigmaΣ. Audit: check that the event-rate model (Poisson or renewal process) matches this bound for reasonable σ\sigmaσ and jΣaj^a_\SigmajΣa. ==== Treat two distant boundaries Σ1,Σ2\Sigma_1,\Sigma_2Σ1,Σ2 exchanging photons. The net momentum transfer per unit time on Σ2\Sigma_2Σ2 due to Σ1\Sigma_1Σ1 scales as ==== P˙∼σ1σ2(4πr2)1c,\dot{P} \sim \frac{\sigma_1 \sigma_2}{(4\pi r^2)}\frac{1}{c},P˙∼(4πr2)σ1σ2c1, producing an effective F∝1/r2F\propto 1/r^2F∝1/r2. Audit: formalize this by computing the surface Poynting vector and its normal component, then show under phase-coherent assumptions the sign is always attractive at long wavelength (spin-2 effective kernel from two spin-1 exchanges). Compare the resulting coefficient with Newton’s GGG. ==== Define horizon scale R=ctR=ctR=ct, microscopic length ℓ\ellℓ (e.g., reduced Compton of proton), and count boundary modes: ==== N(t)≈4πR2ℓ2∝t2.\mathcal{N}(t) \approx \frac{4\pi R^2}{\ell^2}\propto t^2.N(t)≈ℓ24πR2∝t2. Assign mass per mode m⋆=αmmpm_\star = \alpha_m m_pm⋆=αmmp. Then Mu(t)≈αmmp4π(ct)2ℓ2∝t2.M_u(t) \approx \alpha_m m_p \frac{4\pi (ct)^2}{\ell^2} \propto t^2.Mu(t)≈αmmpℓ24π(ct)2∝t2. Audit: (i) reproduce the t2t^2t2 law; (ii) fit αm\alpha_mαm to present-day mass → we found αm∼1.06×10−5\alpha_m\sim 1.06\times10^{-5}αm∼1.06×10−5; (iii) check energy budget consistency (early-time radiation vs today). ==== Because the bulk EM action is standard Maxwell and the boundary variation yields standard pillbox conditions, the four Maxwell equations remain unchanged in the bulk. The difference is interpretive: QAT ties the sources (surface charge/current) to event-based boundary dynamics on S2S^2S2. ==== Audit: explicitly show that the divergence and curl equations are unmodified and that Gauss’s law on a Gaussian surface enclosing Σ\SigmaΣ returns the expected surface charge. ==== 1. Boundary variation: From SbdyS_{\text{bdy}}Sbdy derive JΣμJ^\mu_{\Sigma}JΣμ and the jump conditions for E,B\mathbf{E},\mathbf{B}E,B. ==== # Surface stress tensor: Derive SabS_{ab}Sab and show Israel junction reproduces Newtonian potential outside the shell; extract an effective G(σ,p,rates)G(\sigma,p,\text{rates})G(σ,p,rates). # Spin-½ on S²: Confirm antiperiodic boundary condition and show how an effective half-radius r0/2r_0/2r0/2 appears in angular momentum quantization. # Uncertainty link: Model absorption events as a point process on Σ\SigmaΣ and show ΔE Δt≥h/(4π)\Delta E\,\Delta t\ge h/(4\pi)ΔEΔt≥h/(4π) with h/2πh/2\pih/2π explicit. # Two-boundary force: Compute net momentum transfer between Σ1,Σ2\Sigma_1,\Sigma_2Σ1,Σ2 using EM flux; identify when the sign is attractive and compare magnitude to Gm1m2/r2G m_1 m_2/r^2Gm1m2/r2. # LNH scaling: Reproduce N∝t2\mathcal{N}\propto t^2N∝t2 and calibrate αm\alpha_mαm. # Consistency: Check local energy conservation: energy removed from radiation fields equals increase in boundary internal energy (mass + heat + EM). # Limits: Show third-law compatibility: as T→0T\to 0T→0, boundary event rate → 0, so “time production” rate → 0 (QAT’s arrow slows locally). ==== - A rigorous microphysical form for SbdyS_{\text{bdy}}Sbdy: what minimal terms are needed to produce JΣμJ^\mu_\SigmaJΣμ and SabS_{ab}Sab without breaking gauge or diffeomorphism invariance? ==== * Proving attraction (not repulsion) generically for the second-order EM mechanism. * Deriving the exact value of GGG and α from geometry (avoid numerology). * Ensuring no conflict with precision QED (Lamb shift, g−2g-2g−2) and with constraints on G˙,α˙\dot{G}, \dot{\alpha}G˙,α˙. ==== - c=1/ϵ0μ0c=1/\sqrt{\epsilon_0\mu_0}c=1/ϵ0μ0. ==== * D=ϵ0E\mathbf{D}=\epsilon_0 \mathbf{E}D=ϵ0E, H=B/μ0\mathbf{H}=\mathbf{B}/\mu_0H=B/μ0. * Pillbox jump conditions (across Σ\SigmaΣ with normal n^\hat{\mathbf{n}}n^): n^⋅(D2−D1)=σs\hat{\mathbf{n}}\cdot(\mathbf{D}_2-\mathbf{D}_1)=\sigma_sn^⋅(D2−D1)=σs, n^×(H2−H1)=Ks\hat{\mathbf{n}}\times(\mathbf{H}_2-\mathbf{H}_1)=\mathbf{K}_sn^×(H2−H1)=Ks, n^⋅(B2−B1)=0\hat{\mathbf{n}}\cdot(\mathbf{B}_2-\mathbf{B}_1)=0n^⋅(B2−B1)=0, n^×(E2−E1)=0\hat{\mathbf{n}}\times(\mathbf{E}_2-\mathbf{E}_1)=0n^×(E2−E1)=0. ==== - Symbolic notebook: derive (i) boundary Maxwell jump; (ii) SabS_{ab}Sab from SbdyS_{\text{bdy}}Sbdy; (iii) Israel junction → Newtonian limit. ==== * Numerical script: two-sphere momentum exchange vs distance; compare to Gm1m2/r2G m_1 m_2/r^2Gm1m2/r2. * Spectral script: spinor spherical harmonics on S2S^2S2, show quantization and effective r0/2r_0/2r0/2 factor. If you’d like, I can now turn this into a short markdown/PDF one-pager for easy sharing — or jump straight to one of the “Minimal files” items and draft the boundary-variation derivation in a form Copitor can execute.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)