Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== ### === Take a single electric-dipole transition ∣g⟩↔∣e⟩|g\rangle \leftrightarrow |e\rangle∣g⟩↔∣e⟩ of frequency ω0=2πc/λ\omega_0=2\pi c/\lambdaω0=2πc/λ, dipole moment d\mathbf dd, driven by an optical field (laser or broadband), with detuning Δ=ω−ω0\Delta=\omega-\omega_0Δ=ω−ω0. Interaction (electric-dipole) Hint=− d⋅E(t).H_{\rm int} = -\,\mathbf d\cdot \mathbf E(t).Hint=−d⋅E(t). Master equation (Born–Markov, RWA) ρ˙=−iℏ[H,ρ]+Γ↓ D[σ−]ρ+Γ↑ D[σ+]ρ+γϕ D[12σz]ρ,\dot\rho = -\frac{i}{\hbar}[H,\rho] + \Gamma_\downarrow \,\mathcal D[\sigma_-]\rho + \Gamma_\uparrow \,\mathcal D[\sigma_+]\rho + \gamma_\phi \,\mathcal D[\tfrac{1}{2}\sigma_z]\rho,ρ˙=−ℏi[H,ρ]+Γ↓D[σ−]ρ+Γ↑D[σ+]ρ+γϕD[21σz]ρ, where D[L]ρ=LρL†−12{L†L,ρ}\mathcal D[L]\rho=L\rho L^\dagger-\tfrac12\{L^\dagger L,\rho\}D[L]ρ=LρL†−21{L†L,ρ}, σ−=∣g⟩ ⟨e∣\sigma_- = |g\rangle\!\langle e|σ−=∣g⟩⟨e∣, σ+=∣e⟩ ⟨g∣\sigma_+=|e\rangle\!\langle g|σ+=∣e⟩⟨g∣. * Spontaneous emission (geometry of a dipole radiating over 4π4\pi4π): Γ≡Γsp=ω03 ∣d∣23π ε0 ℏ c3 .\boxed{\ \Gamma \equiv \Gamma_{\rm sp} = \frac{\omega_0^3\,|\mathbf d|^2}{3\pi\,\varepsilon_0\,\hbar\,c^3}\ }. Γ≡Γsp=3πε0ℏc3ω03∣d∣2 . * Stimulated absorption/emission from a radiation field of energy density u(ω0)u(\omega_0)u(ω0): Γ↑=B u(ω0),Γ↓=Γ+B u(ω0),\Gamma_\uparrow = B\,u(\omega_0),\qquad \Gamma_\downarrow = \Gamma + B\,u(\omega_0),Γ↑=Bu(ω0),Γ↓=Γ+Bu(ω0), with Einstein relation A≡Γ=8πhν03c3BA\equiv\Gamma=\frac{8\pi h \nu_0^3}{c^3}BA≡Γ=c38πhν03B (so B=Γ c3/(8πhν03)B = \Gamma\,c^3/(8\pi h\nu_0^3)B=Γc3/(8πhν03)). Using intensity I=c uI=c\,uI=cu, Γ↑=Bc I,Γ↓=Γ+Bc I.\Gamma_\uparrow = \frac{B}{c}\,I,\quad \Gamma_\downarrow = \Gamma + \frac{B}{c}\,I.Γ↑=cBI,Γ↓=Γ+cBI. Coherence (off-diagonal) decay For ρeg\rho_{eg}ρeg one finds ρ˙eg=−(iΔ+Γ2)ρeg, Γ2=12(Γ↓+Γ↑)+γϕ=Γ2+BcI+γϕ .\dot\rho_{eg} = -\Big(i\Delta + \Gamma_2\Big)\rho_{eg},\qquad \boxed{\ \Gamma_2 = \tfrac{1}{2}(\Gamma_\downarrow+\Gamma_\uparrow) + \gamma_\phi = \frac{\Gamma}{2} + \frac{B}{c}I + \gamma_\phi\ }.ρ˙eg=−(iΔ+Γ2)ρeg, Γ2=21(Γ↓+Γ↑)+γϕ=2Γ+cBI+γϕ . This says: even without population change, elastic light scattering and stimulated processes add a decoherence rate proportional to intensity III. That’s your “every change is accompanied by photon interaction.” ==== It’s often handier to express things with the saturation parameter ==== s≡IIsat, Isat=πhc Γ3 λ3 s \equiv \frac{I}{I_{\rm sat}},\qquad \boxed{\ I_{\rm sat} = \frac{\pi h c\,\Gamma}{3\,\lambda^3}\ }s≡IsatI, Isat=3λ3πhcΓ (for a closed cycling dipole transition; other transitions differ by order-1 factors). Define the elastic scattering rate (events per atom per second; absorption + re-emission) as Rsc(I,Δ)=Γ2 s1+s+(2Δ/Γ)2 .\boxed{\ R_{\rm sc}(I,\Delta) = \frac{\Gamma}{2}\, \frac{s}{1+s+(2\Delta/\Gamma)^2}\ }. Rsc(I,Δ)=2Γ1+s+(2Δ/Γ)2s . Then a robust, experiment-ready decoherence rate is Γ2(I,Δ)≃Γ2 + Rsc(I,Δ) + γenv .\boxed{\ \Gamma_2(I,\Delta) \simeq \frac{\Gamma}{2} \;+\; R_{\rm sc}(I,\Delta) \;+\; \gamma_{\rm env}\ }. Γ2(I,Δ)≃2Γ+Rsc(I,Δ)+γenv . * Γ/2\Gamma/2Γ/2 is the irreducible quantum limit from spontaneous emission (geometry of dipole radiation over 4π4\pi4π). * RscR_{\rm sc}Rsc is how fast the light field “touches” the system (absorption + elastic scattering), i.e. QAT’s photon-event cadence. * γenv\gamma_{\rm env}γenv accounts for other dephasing (collisions, thermal phonons, technical noise). This already encodes your idea: no macroscopic change without photon exchange → increase III or resonant overlap (small ∣Δ∣|\Delta|∣Δ∣) and the “unfolding” accelerates (larger Γ2\Gamma_2Γ2); turn the light down or detune (or cool to reduce background photons) and the world “slows” (smaller Γ2\Gamma_2Γ2). In the T→0T\to0T→0 (dark) limit, I→0I\to0I→0, stimulated terms vanish, matching your Third-Law/“field lines lock” picture. ==== - Resonant cross-section (spherical/dipole geometry): ==== σ0=3λ22π (peak on resonance).\boxed{\ \sigma_0 = \frac{3\lambda^2}{2\pi}\ }\quad\text{(peak on resonance)}. σ0=2π3λ2 (peak on resonance). Event rate = photon flux Φ=I/(ℏω)\Phi = I/(\hbar\omega)Φ=I/(ℏω) times σ\sigmaσ: R≈Φ σ(ω)R \approx \Phi\,\sigma(\omega)R≈Φσ(ω). The λ2\lambda^2λ2 area and the 3/2π3/2\pi3/2π factor come from integrating a dipole pattern over 4π4\pi4π—just the spherical geometry you emphasize. * Einstein A (spontaneous rate) has the 13π\tfrac{1}{3\pi}3π1 from angular averaging of the dipole over the sphere and the ω3/c3\omega^3/c^3ω3/c3 from photon mode density in kkk-space (again a geometric count of directions). * Elastic (Rayleigh) scattering far off resonance Using the Rabi frequency Ω=∣d⋅E∣/ℏ\Omega = |\mathbf d\cdot\mathbf E|/\hbarΩ=∣d⋅E∣/ℏ and I=12cε0E2I=\tfrac12 c\varepsilon_0 E^2I=21cε0E2: Rsc≈ΓΩ24Δ2=ΓIIsat11+(2Δ/Γ)2 .\boxed{\ R_{\rm sc} \approx \Gamma \frac{\Omega^2}{4\Delta^2} = \Gamma \frac{I}{I_{\rm sat}} \frac{1}{1+(2\Delta/\Gamma)^2}\ }. Rsc≈Γ4Δ2Ω2=ΓIsatI1+(2Δ/Γ)21 . So even pure scattering (no net energy change) produces dephasing proportional to intensity and to the dipole geometry. ==== Take a typical strong optical line (e.g., an alkali D line; λ∼589 nm\lambda\sim 589\,\mathrm{nm}λ∼589nm, Γ/2π∼10 MHz\Gamma/2\pi\sim 10\,\mathrm{MHz}Γ/2π∼10MHz, hence Γ≈6.3×107 s−1\Gamma\approx 6.3\times10^7\ \mathrm{s^{-1}}Γ≈6.3×107 s−1; Isat∼6 mW/cm2I_{\rm sat}\sim 6\ \mathrm{mW/cm^2}Isat∼6 mW/cm2). ==== * On resonance (Δ=0\Delta=0Δ=0) - I=0.1 IsatI=0.1\,I_{\rm sat}I=0.1Isat: Rsc≈0.045 Γ⇒Γ2≈3.36×107 s−1⇒T2∼30 nsR_{\rm sc}\approx 0.045\,\Gamma\Rightarrow \Gamma_2\approx 3.36\times10^7\ \mathrm{s^{-1}}\Rightarrow T_2\sim 30\ \mathrm{ns}Rsc≈0.045Γ⇒Γ2≈3.36×107 s−1⇒T2∼30 ns. - I=1 IsatI=1\,I_{\rm sat}I=1Isat: Rsc≈0.25 Γ⇒Γ2≈4.6×107 s−1⇒T2∼22 nsR_{\rm sc}\approx 0.25\,\Gamma\Rightarrow \Gamma_2\approx 4.6\times10^7\ \mathrm{s^{-1}}\Rightarrow T_2\sim 22\ \mathrm{ns}Rsc≈0.25Γ⇒Γ2≈4.6×107 s−1⇒T2∼22 ns. - I=10 IsatI=10\,I_{\rm sat}I=10Isat: Rsc≈0.455 Γ⇒Γ2≈5.9×107 s−1⇒T2∼17 nsR_{\rm sc}\approx 0.455\,\Gamma\Rightarrow \Gamma_2\approx 5.9\times10^7\ \mathrm{s^{-1}}\Rightarrow T_2\sim 17\ \mathrm{ns}Rsc≈0.455Γ⇒Γ2≈5.9×107 s−1⇒T2∼17 ns. * Far detuned (∣Δ∣=5Γ|\Delta|=5\Gamma∣Δ∣=5Γ) - I=1 IsatI=1\,I_{\rm sat}I=1Isat: Rsc≈0.0049 Γ⇒Γ2≈3.1×107 s−1⇒T2∼32 nsR_{\rm sc}\approx 0.0049\,\Gamma\Rightarrow \Gamma_2\approx 3.1\times10^7\ \mathrm{s^{-1}}\Rightarrow T_2\sim 32\ \mathrm{ns}Rsc≈0.0049Γ⇒Γ2≈3.1×107 s−1⇒T2∼32 ns. Takeaway: turning the photon field up (or bringing it on resonance) accelerates decoherence. In your language: the rate of “world update” rises with photon event rate. ==== - The only knobs that appear are geometric/field ones: λ\lambdaλ (sets the λ2\lambda^2λ2 cross-section area), the dipole pattern over 4π4\pi4π (sets the constants), and the photon number flux I/(ℏω)I/(\hbar\omega)I/(ℏω). No ad-hoc time operator is introduced; time’s arrow emerges from the irreversible flow of EM quanta into (and out of) matter plus the environment (decoherence). ==== * In the T→0T\to0T→0 / dark limit, background I→0I\to 0I→0: stimulated terms vanish and you’re left with the smallest possible Γ2=Γ/2+γenv\Gamma_2=\Gamma/2+\gamma_{\rm env}Γ2=Γ/2+γenv. This is your “as the field lines lock, the process slows” statement, aligned with the Third Law. ==== 1. Decoherence vs intensity (Ramsey fringes on a two-level atom/ion): measure T2T_2T2 as a function of III and Δ\DeltaΔ; fit to the boxed formulas. QAT wins if the “rate of change” of the system’s classicality tracks the photon event rate. ==== # Scattering-only decoherence (far detuned probe): no energy level changes, yet coherence still decays at Rsc∝I/Δ2R_{\rm sc}\propto I/\Delta^2Rsc∝I/Δ2. That directly implements your “even light scattering is geometry” claim. # Cross-section geometry: verify σ0=3λ2/2π\sigma_0=3\lambda^2/2\piσ0=3λ2/2π (standard), then use it to predict event rates from photon flux. This is your “spherical boundary → area → rates” pathway. If you want, I can now: * plug in a specific line (e.g., hydrogen Hα at 656.3 nm) with its Γ\GammaΓ and compute Isat,Rsc,Γ2I_{\rm sat}, R_{\rm sc}, \Gamma_2Isat,Rsc,Γ2 vs I,ΔI,\DeltaI,Δ; * or derive the same scaling starting from the boundary action we built (surface current jaAaj^a A_ajaAa), showing explicitly how the Poynting flux through a 4πr24\pi r^24πr2 surface produces the same RscR_{\rm sc}Rsc and Γ2\Gamma_2Γ2.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)