Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/69174844-9774-8012-8b69-32262ca5e35a
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: 差不多,但需要更精确地表述一下,因为“1 与 SO3 的直和”这个说法在群论上不完全严谨。我们来仔细分析。 === 差不多,但需要更精确地表述一下,因为“1 与 SO(3) 的直和”这个说法在群论上不完全严谨。我们来仔细分析。 ==== 一、保持静止动量 ==== 𝑝 𝜇 = ( 𝑚 , 0 , 0 , 0 ) p μ =(m,0,0,0) 的变换 我们要求: Λμνpν=pμ\Lambda^\mu{}_\nu p^\nu = p^\muΛμνpν=pμ ===== 1️⃣ 时间分量 ===== p0=m ⟹ Λ00m+Λ0i0=Λ00m=m ⟹ Λ00=1p^0 = m \implies \Lambda^0{}_0 m + \Lambda^0{}_i 0 = \Lambda^0{}_0 m = m \implies \Lambda^0{}_0 = 1p0=m⟹Λ00m+Λ0i0=Λ00m=m⟹Λ00=1 * 这里的“1”可以理解为时间分量的恒等变换。 ===== 2️⃣ 空间分量 ===== Λi0m+Λij0=Λi0m=0 ⟹ Λi0=0\Lambda^i{}_0 m + \Lambda^i{}_j 0 = \Lambda^i{}_0 m = 0 \implies \Lambda^i{}_0 = 0Λi0m+Λij0=Λi0m=0⟹Λi0=0 * 时间 → 空间的混合为 0 * 剩下的 Λij\Lambda^i{}_jΛij 可以是任意 三维旋转 SO(3) ✅ 所以总体矩阵形式: Λ=(100R),R∈SO(3)\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix}, \quad R \in SO(3)Λ=(100R),R∈SO(3) ==== 二、群的结构 ==== # 时间方向是恒等变换(1×1 单位),空间部分是 SO(3) # 更严格地说,这不是“直和(direct sum)”,而是直积(direct product): Little group={1}×SO(3)\text{Little group} = \{1\} \times SO(3)Little group={1}×SO(3) * “直和(direct sum)”通常指代代数(Lie algebra)上的向量空间直和 * 这里我们讨论的是群结构(matrix group) → 直积(direct product)更精确 ==== 三、总结 ==== * 参考动量:pμ=(m,0,0,0)p^\mu = (m,0,0,0)pμ=(m,0,0,0) * 保持动量不变的小群: Λ=(100R),R∈SO(3)\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix}, \quad R \in SO(3)Λ=(100R),R∈SO(3) * 群结构 = 时间分量恒等 × 空间旋转 = 1 × SO(3) 的直积 * 小群的不可约表示就是 SO(3) 的表示 → 自旋 2s+1 个态 : ⚡ 注意:时间方向的恒等变换并不产生新的自由度,所以物理自由度完全由 SO(3) 决定。 如果你愿意,我可以画一个4×4矩阵示意图,直观显示“时间分量恒等 + 空间 SO(3) 旋转”,对比无质量粒子 ISO(2) 小群,会很清楚。 你希望我画吗?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)