Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Purpose (short): produce a concrete, copy-paste-ready roadmap that a physicist or an AI (Copitor) can run to compute the one-loop induced gravitational prefactor κind\kappa_{\rm ind}κind arising from electromagnetic (spin-1) and Dirac (spin-1/2) fields localized on — or coupled through — a thin spherical shell. The calculation aims to show how QAT’s boundary geometry and field content produce the coefficient that appears in the induced-gravity estimate for Newton’s GGG. === : ==== 1. Geometry & fields: define the spacetime manifold and the thin spherical boundary (S² shell). Choose Euclidean 4D manifold with a static spherical shell of radius RRR and small thickness ε\varepsilonε. ==== # Action & boundary conditions: write the full classical action (EM + Dirac + gauge fixing + ghosts) in SI units with minimal coupling Dμ=∇μ+iqAμ/ℏD_\mu = \nabla_\mu + i q A_\mu/\hbarDμ=∇μ+iqAμ/ℏ. Specify physical boundary conditions (conducting shell for EM; MIT bag or antiperiodic conditions for Dirac). # One-loop effective action via heat kernel: reduce the problem to functional determinants of second-order elliptic operators. Use the heat-kernel expansion to extract the coefficient of the curvature scalar RRR in the effective action. That coefficient determines the induced 1/G1/G1/G. # Evaluate coefficients & numerics: compute (or use known tables for) the heat-kernel coefficients (bulk + boundary) for the chosen fields and boundary conditions. Combine bosonic and fermionic contributions to produce κind\kappa_{\rm ind}κind and evaluate numerically for candidate cutoffs Λ∼1/L⋆\Lambda\sim 1/L_\starΛ∼1/L⋆ (Planck length vs atomic length). ==== - Work in Euclidean 4D spacetime with metric gμνg_{\mu\nu}gμν. For simplicity take the background to be nearly flat except for the presence of a static thin spherical shell at radius RRR (shell worldvolume is S2×RτS^2\times\mathbb{R}_\tauS2×Rτ). ==== * Represent the shell as a co-dimension-1 thin layer of thickness ε\varepsilonε; at the end we will take ε→0\varepsilon \to 0ε→0 holding appropriate surface parameters fixed. * The effective action calculation will use local heat-kernel coefficients; extrinsic curvature of the shell and its surface geometry will enter boundary coefficients. Assume the curvature of the large background is small (so the extraction of the induced RRR prefactor is local and dominated by UV modes near the shell). ==== Electromagnetic action (SI): ==== SEM = −14μ0∫d4x g FμνFμνS_{\rm EM} \,=\, -\frac{1}{4\mu_0}\int d^4x\,\sqrt{g}\, F_{\mu\nu}F^{\mu\nu}SEM=−4μ01∫d4xgFμνFμν where Fμν=∂μAν−∂νAμF_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\muFμν=∂μAν−∂νAμ and μ0\mu_0μ0 is the vacuum permeability. (Recall ε0μ0c2=1\varepsilon_0\mu_0c^2=1ε0μ0c2=1). Dirac action (SI, using ℏ=h/2π\hbar=h/2\piℏ=h/2π): SD = ∫d4x g [iℏ2(ψˉγμDμψ−(Dμψˉ)γμψ)−mc ψˉψ]S_{\rm D} \,=\, \int d^4x\,\sqrt{g}\;\left[\frac{i\hbar}{2}\left(\bar\psi\gamma^\mu D_\mu\psi - (D_\mu\bar\psi)\gamma^\mu\psi\right) - m c\,\bar\psi\psi\right]SD=∫d4xg[2iℏ(ψˉγμDμψ−(Dμψˉ)γμψ)−mcψˉψ] with minimal coupling Dμψ = ∇μψ+iqℏ AμψD_\mu \psi \,=\, \nabla_\mu\psi + i\frac{q}{\hbar}\,A_\mu\psiDμψ=∇μψ+iℏqAμψ and charge q=eq=eq=e for the electron. Gauge fixing + ghosts (Lorenz gauge): Sgf=−12μ0ξ∫d4xg (∇μAμ)2,Sghost=∫d4xg cˉ(−∇2)cS_{\rm gf} = -\frac{1}{2\mu_0\xi}\int d^4x\sqrt{g}\,(\nabla_\mu A^\mu)^2,\qquad S_{\rm ghost} = \int d^4x\sqrt{g}\;\bar c(-\nabla^2)cSgf=−2μ0ξ1∫d4xg(∇μAμ)2,Sghost=∫d4xgcˉ(−∇2)c Pick ξ=1\xi=1ξ=1 (Feynman gauge). Boundary action (thin shell): include a surface term encoding localized boundary degrees of freedom (charge density, conductivity, or surface polarizability). A practical parameterization: Ssurf=∫shelld3yh [σ2AaAa+η ψˉψ+⋯ ]S_{\rm surf} = \int_{\text{shell}} d^3y\sqrt{h}\;\left[\frac{\sigma}{2} A_a A^a + \eta \,\bar\psi\psi + \cdots\right]Ssurf=∫shelld3yh[2σAaAa+ηψˉψ+⋯] where hhh is the induced 3-metric on the shell, indices aaa are tangential, and σ,η\sigma,\etaσ,η parameterize coupling strengths / surface response. Total classical action: Scl=SEM+Sgf+Sghost+SD+Ssurf.S_{\rm cl}=S_{\rm EM}+S_{\rm gf}+S_{\rm ghost}+S_{\rm D}+S_{\rm surf}.Scl=SEM+Sgf+Sghost+SD+Ssurf. ==== We want the Euclidean one-loop effective action ==== W = 12lndetΔB−lndetΔF+[ghosts]+[surface determinants]W\;=\;\frac{1}{2}\ln\det\Delta_{\rm B} - \ln\det\Delta_{\rm F} + [\text{ghosts}] + [\text{surface determinants}]W=21lndetΔB−lndetΔF+[ghosts]+[surface determinants] where ΔB\Delta_{\rm B}ΔB is the second-order elliptic operator for bosonic fluctuations (vector) after gauge fixing and ΔF\Delta_{\rm F}ΔF the Dirac (squared) operator for fermions. Use the heat-kernel representation (Euclidean): lndetΔ=−∫ε∞dtt Tr e−tΔ\ln\det\Delta = -\int_{\varepsilon}^{\infty}\frac{dt}{t}\;\mathrm{Tr}\,e^{-t\Delta}lndetΔ=−∫ε∞tdtTre−tΔ and the small-t asymptotic expansion for the trace (in 4D with boundary): Tr e−tΔ∼∑k=0∞t(k−4)/2 Ak(Δ)\mathrm{Tr}\,e^{-t\Delta} \sim \sum_{k=0}^{\infty} t^{(k-4)/2}\,A_k(\Delta)Tre−tΔ∼k=0∑∞t(k−4)/2Ak(Δ) The A2A_2A2 coefficient (the term that gives t−1t^{-1}t−1) carries the integrated curvature invariants that feed the induced ∫R\int R∫R term. Schematic relation: the induced Einstein–Hilbert term scales with heat-kernel coefficient A2A_2A2 and the UV regulator (e.g. Λ2\Lambda^2Λ2 or lnΛ\ln\LambdalnΛ). ==== - D. V. Vassilevich, “Heat kernel expansion: user's manual” (Phys. Rep. 2003) — tables for boundary coefficients. ==== * P. B. Gilkey, “Invariance theory, the heat equation, and the Atiyah–Singer index theorem” (1995). * Bordag et al., Casimir/shell literature. * Sakharov (1967) reviews on induced gravity. Practical step: gather explicit A2A_2A2 formulas for scalar/Robin, vector with conducting/impedance boundaries, and squared Dirac with MIT bag / spectral conditions. ==== 1. Compute A2tot=∑isiA2(i)A^{\rm tot}_2 = \sum_i s_i A_2^{(i)}A2tot=∑isiA2(i) (bulk + boundary). ==== # Match the induced action term W⊃116πGind∫g RW \supset \frac{1}{16\pi G_{\rm ind}}\int\sqrt{g}\,RW⊃16πGind1∫gR and extract 1/Gind1/G_{\rm ind}1/Gind in terms of A2totA_2^{\rm tot}A2tot and regulator dependence. # Define κind\kappa_{\rm ind}κind via a Sakharov-style scaling: 1Gind=c3ℏ κind Λ2\frac{1}{G_{\rm ind}} = \frac{c^3}{\hbar}\;\kappa_{\rm ind}\;\Lambda^2Gind1=ℏc3κindΛ2 and solve for κind\kappa_{\rm ind}κind. ==== - EM shell: perfect conductor ↔ tangential EEE=0 (Robin/impedance conditions); partial conductivity parameterized by σ\sigmaσ. ==== * Dirac field: MIT bag or spectral/APS boundary conditions; antiperiodic Euclidean time as a handle on thermal modes. Qualitatively: bosons and fermions contribute with opposite sign; cancellations can suppress (or enhance) the net induced 1/G1/G1/G. ==== 1. Set geometry & background (spherical coordinates). ==== # Write linearized fluctuation operators; perform gauge fixing; identify Laplace-type operators. # Choose boundary conditions: encode as Robin-type conditions with parameters σ,η\sigma,\etaσ,η. # Obtain heat-kernel coefficients from tables or compute eigenvalue sums. # Assemble A2totA_2^{\rm tot}A2tot; include ghosts and subtract fermion sign. # Regularize & extract 1/G1/G1/G. # Express κind\kappa_{\rm ind}κind and evaluate numerically for cutoffs (Planck, atomic, other). # Sweep surface parameters to find regimes where QAT’s boundary physics produces plausible suppression. ==== - If κind∼O(1)\kappa_{\rm ind}\sim O(1)κind∼O(1) for Λ∼1/ℓP\Lambda\sim 1/\ell_PΛ∼1/ℓP, an induced-gravity picture is viable. ==== * If κind\kappa_{\rm ind}κind remains large, we need stronger cancellations or new microphysics. * If boundary physics suppresses κind\kappa_{\rm ind}κind significantly, QAT’s shell mechanism is promising. ==== - Symbolic algebra: Mathematica (heatkernel packages) or Python/SymPy. ==== * Numerical: eigenvalue sums with Python + SciPy. * References: Vassilevich (2003), Gilkey (1995), Sakharov (1967), Kirsten (2001). ==== Schematic form: ==== 1Gind=c3ℏ Λ2 [αvec(σ)⋅Nvec−αferm(η)⋅Nferm+αsurf(σ,η,R)].\frac{1}{G_{\rm ind}} = \frac{c^3}{\hbar}\;\Lambda^2\;\left[\alpha_\text{vec}(\sigma)\cdot N_{\rm vec} - \alpha_\text{ferm}(\eta)\cdot N_{\rm ferm} + \alpha_{\rm surf}(\sigma,\eta, R)\right].Gind1=ℏc3Λ2[αvec(σ)⋅Nvec−αferm(η)⋅Nferm+αsurf(σ,η,R)]. Then define κind=[αvecNvec−αfermNferm+αsurf].\kappa_{\rm ind} = \left[\alpha_\text{vec} N_{\rm vec} - \alpha_\text{ferm} N_{\rm ferm} + \alpha_{\rm surf}\right].κind=[αvecNvec−αfermNferm+αsurf]. ==== - (A) Full Copitor job: exact symbolic derivation plan with copyable code (Mathematica or Python) to perform the computation end-to-end. ==== * (B) Numerical prototype: eigenvalue sum prototype for a simplified scalar+Dirac configuration on S2×RτS^2\times\mathbb{R}_\tauS2×Rτ. * (C) Parameter sweep visualization: contour plots of κind\kappa_{\rm ind}κind vs cutoff and surface parameters. If you want to proceed I will prepare (A) full Copitor job that you can paste into Copitor and run to produce the symbolic κind\kappa_{\rm ind}κind expression (then we can run numeric prototypes). If you want me to try the canvas update again I will (I can try a second programmatic attempt with a different strategy). Otherwise copy-paste the Annex above into your canvas and I’ll continue from there (or I’ll prepare the Copitor job to paste into Copitor). Which do you prefer?
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)