Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Goal (short): produce a concrete recipe that a physicist or an AI (Copitor) can run to compute the one-loop induced gravitational prefactor κind\kappa_{\rm ind}κind coming from electromagnetic (spin-1) and Dirac (spin-1/2) fields interacting with a thin spherical shell (the QAT boundary). The final aim is an explicit symbolic expression and numerical estimates for === 1Gind ≃ c3ℏ κind Λ2,\frac{1}{G_{\rm ind}} \;\simeq\; \frac{c^3}{\hbar}\,\kappa_{\rm ind}\,\Lambda^2,Gind1≃ℏc3κindΛ2, with ℏ=h/2π\hbar=h/2\piℏ=h/2π and Λ\LambdaΛ the UV cutoff (inverse microscopic length L⋆L_\starL⋆). : ==== 1. Geometry & fields: pick Euclidean 4-D background and a thin spherical shell at radius RRR. ==== # Action & boundary terms: write the full classical action (EM + Dirac + gauge fixing + ghost + surface response terms). Choose boundary conditions parametrized by surface couplings (conductivity σ\sigmaσ, fermion surface coupling η\etaη, etc.). # One-loop effective action → heat kernel: reduce one-loop determinants to heat kernels of Laplace-type operators, collect the relevant heat-kernel coefficient A2A_2A2 (bulk + boundary) responsible for terms ∝∫g R\propto\int\sqrt{g}\,R∝∫gR. # Assemble & evaluate: combine bosonic and fermionic contributions, regularize (cutoff Λ\LambdaΛ), extract 1/Gind1/G_{\rm ind}1/Gind and define κind\kappa_{\rm ind}κind. Run numeric evaluations for plausible cutoffs and surface parameters. ==== - Euclidean 4-manifold MMM with metric gμνg_{\mu\nu}gμν. The thin shell worldvolume is S2×RτS^2\times\mathbb{R}_\tauS2×Rτ (spatial sphere × Euclidean time). ==== * Shell represented as a thin co-dimension-1 layer of thickness ε\varepsilonε. At the end we send ε→0\varepsilon\to0ε→0 while keeping surface couplings fixed. * We assume the external curvature is small so local, UV-dominated spectral coefficients control the induced prefactor. ==== Electromagnetism (SI): ==== SEM=−14μ0∫Md4x g FμνFμν,Fμν=∂μAν−∂νAμ.S_{\rm EM} = -\frac{1}{4\mu_0}\int_M d^4x\,\sqrt{g}\;F_{\mu\nu}F^{\mu\nu}, \qquad F_{\mu\nu}=\partial_\mu A_\nu-\partial_\nu A_\mu.SEM=−4μ01∫Md4xgFμνFμν,Fμν=∂μAν−∂νAμ. Dirac field (SI): SD=∫Md4x g [iℏ2(ψˉγμDμψ−(Dμψˉ)γμψ)−mc ψˉψ],S_{\rm D} = \int_M d^4x\,\sqrt{g}\;\Big[\tfrac{i\hbar}{2}\big(\bar\psi\gamma^\mu D_\mu\psi-(D_\mu\bar\psi)\gamma^\mu\psi\big)-mc\,\bar\psi\psi\Big],SD=∫Md4xg[2iℏ(ψˉγμDμψ−(Dμψˉ)γμψ)−mcψˉψ], with minimal coupling Dμψ=∇μψ+iqℏAμψ,q=e.D_\mu\psi=\nabla_\mu\psi + i\frac{q}{\hbar}A_\mu\psi,\qquad q=e.Dμψ=∇μψ+iℏqAμψ,q=e. Gauge fixing & ghosts (Lorenz, ξ=1\xi=1ξ=1): Sgf=−12μ0∫d4x g (∇μAμ)2,Sghost=∫d4x g cˉ(−∇2)c.S_{\rm gf}=-\frac{1}{2\mu_0}\int d^4x\,\sqrt{g}\,(\nabla_\mu A^\mu)^2,\qquad S_{\rm ghost}=\int d^4x\,\sqrt{g}\;\bar c(-\nabla^2)c.Sgf=−2μ01∫d4xg(∇μAμ)2,Sghost=∫d4xgcˉ(−∇2)c. Shell (surface) response — parametric model: Ssurf=∫∂shelld3y h [σ2 AaAa+η ψˉψ+⋯],S_{\rm surf}=\int_{\partial{\rm shell}} d^3y\,\sqrt{h}\;\Big[\tfrac{\sigma}{2}\,A_aA^a+\eta\,\bar\psi\psi+\cdots\Big],Ssurf=∫∂shelld3yh[2σAaAa+ηψˉψ+⋯], where hhh is the induced 3-metric, aaa are tangential indices, and σ\sigmaσ (units: SI) models surface electromagnetic response (conductivity/polarizability); η\etaη models fermion coupling to the surface. These parameters will enter the boundary (Robin) terms. Total: Scl=SEM+Sgf+Sghost+SD+Ssurf.S_{\rm cl}=S_{\rm EM}+S_{\rm gf}+S_{\rm ghost}+S_{\rm D}+S_{\rm surf}.Scl=SEM+Sgf+Sghost+SD+Ssurf. ==== One-loop Euclidean effective action: ==== W=12lndetΔB−lndetΔF+(ghost determinant)+(surface operator contribution),W = \tfrac{1}{2}\ln\det\Delta_{\rm B} - \ln\det\Delta_{\rm F} + (\text{ghost determinant}) + (\text{surface operator contribution}),W=21lndetΔB−lndetΔF+(ghost determinant)+(surface operator contribution), where Δ\DeltaΔ are second-order elliptic operators (after gauge fixing; the Dirac field is handled by D2D^2D2). Use lndetΔ=−∫ε∞dtt Tr e−tΔ.\ln\det\Delta = -\int_{\varepsilon}^{\infty}\frac{dt}{t}\,\mathrm{Tr}\,e^{-t\Delta}.lndetΔ=−∫ε∞tdtTre−tΔ. In 4 dimensions, small-ttt asymptotic expansion with boundary reads: Tr e−tΔ∼(4πt)−2 ∑k=0∞tk/2Ak(Δ),\mathrm{Tr}\,e^{-t\Delta} \sim (4\pi t)^{-2}\!\sum_{k=0}^{\infty} t^{k/2}A_k(\Delta),Tre−tΔ∼(4πt)−2k=0∑∞tk/2Ak(Δ), with AkA_kAk = integrated bulk + boundary invariants. The coefficient that produces the curvature term is A2A_2A2 (the t−1t^{-1}t−1 piece). After integrating ttt with a UV cutoff Λ\LambdaΛ (e.g. lower bound t=Λ−2t=\Lambda^{-2}t=Λ−2), we obtain the induced Einstein–Hilbert contribution. Schematic extraction: W⊃12(∑isiA2(i))∫Λ−2dt t−1∫d4xg R ⇒ 1Gind∝(∑isiA2(i))×F(Λ),W \supset \frac{1}{2}\Big(\sum_i s_i A_2^{(i)}\Big)\int_{\Lambda^{-2}} dt\,t^{-1} \int d^4x\sqrt{g}\,R \;\Rightarrow\; \frac{1}{G_{\rm ind}} \propto \Big(\sum_i s_i A_2^{(i)}\Big)\times F(\Lambda),W⊃21(i∑siA2(i))∫Λ−2dtt−1∫d4xgR⇒Gind1∝(i∑siA2(i))×F(Λ), with si=+1s_i=+1si=+1 for bosons and −1-1−1 for fermions. For a sharp UV cutoff the dominant scaling is ∼Λ2 \sim\Lambda^2∼Λ2 (Sakharov-style), while for zeta regularization it appears as logarithmic pieces and finite parts. ==== Primary references / formulas (copy into Copitor): ==== * D. V. Vassilevich, Heat kernel expansion: user's manual, Physics Reports (2003). (tables for bulk + boundary coefficients for Laplace-type operators and common boundary conditions). * P. Gilkey, Invariance theory, the heat equation, and the Atiyah–Singer index theorem (1995). * K. Kirsten, Spectral functions in mathematics and physics (2001). * Reviews on induced gravity: A. D. Sakharov (1967) and follow-ups by Adler, Zee, etc. Strategy: you can either * (A) pull the known expressions for A2A_2A2 for Laplace-type operators with Robin, MIT bag and impedance boundary conditions from Vassilevich/Gilkey tables and substitute the surface couplings σ,η\sigma,\etaσ,η; or * (B) compute the spectral sums on S2S^2S2 explicitly (eigenvalues known for spherical harmonics) for each operator and extract the asymptotic heat-kernel coefficients numerically (this is heavier but direct). Because we need boundary terms, option (A) is the fastest and more robust for an initial parametric survey. ==== 1. Compute total spectral coefficient ==== A2tot=∑isiA2(i)(bulk, boundary; σ,η,R).A_2^{\rm tot}=\sum_i s_i A_2^{(i)}(\text{bulk, boundary};\,\sigma,\eta,R).A2tot=i∑siA2(i)(bulk, boundary;σ,η,R). Include ghosts (subtract scalar ghost contribution) and vector gauge-fixing corrections (physical polarizations only). # Match to induced 1/G1/G1/G: identify coefficient multiplying ∫d4xgR\int d^4x\sqrt{g}R∫d4xgR in WWW. With a sharp cutoff Λ\LambdaΛ, 1Gind=c3ℏ κind Λ2withκind∝ℏc3⋅A2tot×(numerical factor from t-integral).\frac{1}{G_{\rm ind}} = \frac{c^3}{\hbar}\; \kappa_{\rm ind}\; \Lambda^2 \quad\text{with}\quad \kappa_{\rm ind} \propto \frac{\hbar}{c^3}\cdot A_2^{\rm tot}\times (\text{numerical factor from }t\text{-integral}).Gind1=ℏc3κindΛ2withκind∝c3ℏ⋅A2tot×(numerical factor from t-integral). (We keep ℏ\hbarℏ explicit; the algebraic prefactors will come out of the integration.) # Compute κind\kappa_{\rm ind}κind symbolically (function of Nvec,Nferm,σ,η,RN_{\rm vec},N_{\rm ferm},\sigma,\eta,RNvec,Nferm,σ,η,R) and then numerically for chosen Λ\LambdaΛ. ==== - Perfect conductor: tangential electric field E∣∣=0E_{||}=0E∣∣=0 on shell ⇒ Robin conditions on AμA_\muAμ components. ==== * Impedance / finite conductivity: encode through σ\sigmaσ (SI units); continuum limit: large σ\sigmaσ → conductor. * Dirac: MIT bag boundary condition or spectral boundary condition; antiperiodic Euclidean time is relevant for thermal/compactified studies. MIT bag conditions enforce (1+iγn)ψ=0(1+i\gamma^n)\psi=0(1+iγn)ψ=0 at the boundary and give known A2A_2A2 contributions in tables. Point: boundary choices strongly affect A2A_2A2. Surface couplings can produce cancellations or amplify the net coefficient — that’s the plausible QAT lever for making κind\kappa_{\rm ind}κind small. ==== 1. Set up background coordinates (spherical coordinates) and express metric and induced boundary geometry; compute extrinsic curvature KKK and boundary intrinsic curvature R\mathcal{R}R symbolic in terms of RRR. ==== # Linearize and identify Laplacians: - Vector: gauge fixed operator Δμν\Delta_{\mu\nu}Δμν. - Ghost: scalar Laplacian. - Fermion: squared Dirac operator D2D^2D2. # Pick boundary conditions (Robin with parameter β\betaβ for scalars, impedance for vectors, MIT bag for fermions) and write them in the standard table form. Map your physical σ,η\sigma,\etaσ,η to those table parameters. # Pull A2A_2A2 formulas from Vassilevich for each operator and boundary type. Substitute geometry (for small curvature you can treat RRR as symbolic). The A2A_2A2 expression will contain combinations like ∫R\int R∫R, ∫∂MK\int_{\partial M} K∫∂MK, ∫∂MR\int_{\partial M}\mathcal{R}∫∂MR, and boundary coupling polynomials in σ,η\sigma,\etaσ,η. # Assemble A2totA_2^{\rm tot}A2tot adding bosonic contributions and subtracting fermionic ones with multiplicity. Include ghost subtraction. # Perform the ttt-integral up to the cutoff Λ\LambdaΛ and isolate the coefficient of ∫R\int R∫R. If using a sharp cut-off: ∫Λ−2∞dtt t−1∼12Λ2+⋯\int_{\Lambda^{-2}}^{\infty}\frac{dt}{t}\,t^{-1} \sim \tfrac{1}{2}\Lambda^2 + \cdots∫Λ−2∞tdtt−1∼21Λ2+⋯ (explicit factors depend on your precise expansion normalization — track (4π)−2(4\pi)^{-2}(4π)−2 normalization from the heat kernel!). # Extract κind\kappa_{\rm ind}κind by matching to 1/Gind=(c3/ℏ) κind Λ21/G_{\rm ind} = (c^3/\hbar)\,\kappa_{\rm ind}\,\Lambda^21/Gind=(c3/ℏ)κindΛ2. # Numerics: evaluate for: - Λ=1/ℓP\Lambda = 1/\ell_PΛ=1/ℓP (Planck cutoff), - Λ=1/(a0/2)\Lambda = 1/(a_0/2)Λ=1/(a0/2) (half Bohr radius), - Some intermediate values. Vary σ,η\sigma,\etaσ,η across physically plausible ranges. ==== After symbolic assembly you should obtain something like ==== 1Gind=c3ℏ Λ2[αvec(σ) Nvec−αferm(η) Nferm+αsurf(σ,η,R)],\frac{1}{G_{\rm ind}} = \frac{c^3}{\hbar}\,\Lambda^2\Big[\alpha_{\rm vec}(\sigma)\,N_{\rm vec} * \alpha_{\rm ferm}(\eta)\,N_{\rm ferm} + \alpha_{\rm surf}(\sigma,\eta,R)\Big],Gind1=ℏc3Λ2[αvec(σ)Nvec−αferm(η)Nferm+αsurf(σ,η,R)], so define κind≡αvecNvec−αfermNferm+αsurf.\kappa_{\rm ind} \equiv \alpha_{\rm vec}N_{\rm vec}-\alpha_{\rm ferm}N_{\rm ferm}+\alpha_{\rm surf}.κind≡αvecNvec−αfermNferm+αsurf. The α\alphaα-functions are dimensionless combinations of heat-kernel numbers and geometry. ==== - If κind\kappa_{\rm ind}κind is O(1) with Λ∼1/ℓP\Lambda\sim 1/\ell_PΛ∼1/ℓP: induced gravity numerically matches the observed GGG. ==== * If κind\kappa_{\rm ind}κind is large → need extra cancellations (more fermions / different boundary physics). * Surface parameters (σ,η\sigma,\etaσ,η) and boundary geometry are the natural QAT control knobs to move κind\kappa_{\rm ind}κind over many orders of magnitude — this is where QAT plausibly connects micro-boundary geometry to the effective macroscopic GGG. ==== - Symbolic: Mathematica or SymPy (Python) for symbolic substitution of A2A_2A2 formulas, keeping ℏ\hbarℏ explicit. ==== * Numeric: Python (SciPy) to evaluate numeric prefactors and do parameter sweeps. * Eigen-sum prototype: for sanity checks you can compute truncated spectral sums on S2S^2S2 (analytic eigenvalues exist) and use numerical asymptotics to extract the UV behavior. This gives a cross-check against table lookups. * Packages / references to paste into Copitor: Vassilevich (2003), Gilkey (1995), Kirsten (2001), Sakharov (1967), Bordag et al. (Casimir calculations on spheres). ==== (A) Full Copitor job (recommended): a copy-pasteable script (Mathematica or Python) that: ==== * loads the A2A_2A2 table entries (symbolic), * substitutes your boundary mapping (σ,η)(\sigma,\eta)(σ,η), * assembles A2totA_2^{\rm tot}A2tot, * does the ttt-integral and matches to 1/Gind1/G_{\rm ind}1/Gind, * outputs symbolic κind\kappa_{\rm ind}κind and numeric values for selectable Λ\LambdaΛ. (B) Numeric prototype: compute a toy eigenvalue sum on S2S^2S2 for a scalar & Dirac case to test orders of magnitude and compare with the table method. (C) Parameter sweep & plots: produce contour plots of κind(σ,η)\kappa_{\rm ind}(\sigma,\eta)κind(σ,η) for a chosen field content and cutoff. If you want me to produce (A) now, say whether you prefer Mathematica or Python (SymPy + SciPy). I will then generate the full script you can paste into Copitor. ==== 1. Choose boundary condition family to test (e.g., perfect conductor σ→∞\sigma\to\inftyσ→∞, MIT bag for fermions). ==== # Pick field multiplicities: Nvec=1N_{\rm vec}=1Nvec=1 (photon), Nferm=1N_{\rm ferm}=1Nferm=1 (one Dirac field — electron), plus ghost subtraction. # Use Vassilevich tables for A2A_2A2 for vector/Dirac with chosen boundary types. Substitute geometry K=2/RK=2/RK=2/R (for sphere) and evaluate symbolic A2totA_2^{\rm tot}A2tot. # Choose cutoff Λ\LambdaΛ values and compute κind\kappa_{\rm ind}κind. # Plot κind\kappa_{\rm ind}κind vs σ,η\sigma,\etaσ,η and check whether κind\kappa_{\rm ind}κind can be tuned to give the observed GGG for plausible Λ\LambdaΛ. If you want, I’ll immediately produce (A) — the full Copitor-friendly script — in whichever language you prefer. Also: say if you’d like me to retry adding this Annex C into your canvas doc (I can try again, or paste it into a new canvas file). Which do you want next? # I’ll generate the Copitor job (Mathematica) now. # I’ll generate the Copitor job (Python) now. # I’ll retry adding Annex C to your canvas doc. # Start a numeric prototype (toy eigenvalue sum) and give first numbers. (You can pick one, or ask me to do two — I’ll start immediately on whichever you pick.)
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)