Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/68b970ce-1e04-8005-85da-9f2468b66517
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assistant: ν΄κ²°μ ν΅μ¬μ λΆλͺ¨λ₯Ό μΈμλΆν΄νλ κ²μ λλ€. === ν΄κ²°μ ν΅μ¬μ λΆλͺ¨λ₯Ό μΈμλΆν΄νλ κ²μ λλ€. f(x)=x2+6x+12=(x+3)2+3>0f(x)=x^2+6x+12=(x+3)^2+3>0f(x)=x2+6x+12=(x+3)2+3>0 μ΄λ―λ‘, (f(x))2βk(x+2)f(x)=f(x)(f(x)βk(x+2))(f(x))^2-k(x+2)f(x)=f(x)\big(f(x)-k(x+2)\big)(f(x))2βk(x+2)f(x)=f(x)(f(x)βk(x+2)) μ΄κ³ , λΆλͺ¨κ° 0μ΄ λλ μΌμ f(x)βk(x+2)=0f(x)-k(x+2)=0f(x)βk(x+2)=0μΌ λλΏμ λλ€. μ΄λ₯Ό gk(x):=x2+(6βk)x+(12β2k)=0g_k(x):=x^2+(6-k)x+(12-2k)=0gkβ(x):=x2+(6βk)x+(12β2k)=0 μ΄λΌ λκ² μ΅λλ€. λͺ¨λ μ€μ aaaμμ κ·Ήν limβ‘xβax2f(x)βgk(x)\displaystyle \lim_{x\to a}\frac{x^2}{f(x)\,g_k(x)}xβalimβf(x)gkβ(x)x2β μ΄ μ‘΄μ¬νλ €λ©΄, * aβ 0a\neq 0aξ =0μμλ λΆλͺ¨κ° 0μ΄ λλ©΄ μ λ©λλ€(λΆμλ x2x^2x2λΌ aβ 0a\neq 0aξ =0μμ 0μ΄ μλλ―λ‘ λ°μ°). * a=0a=0a=0μμλ λΆλͺ¨κ° 0μ΄ λλλΌλ, κ·Έ μκ±° μ°¨μκ° 2 μ΄νμ΄λ©΄ κ·Ήνμ΄ μ ννκ² μ‘΄μ¬ν μ μμ΅λλ€. λ°λΌμ νμ©λλ κ²½μ°λ # gk(x)g_k(x)gkβ(x)κ° μ€κ·Όμ΄ μ ν μμ λ, νΉμ # gk(x)g_k(x)gkβ(x)μ μ μΌν μ€κ·Όμ΄ x=0x=0x=0μ΄κ³ , κ·Έ κ·Όμ μ°¨μκ° 2μΈ κ²½μ°μ λλ€. μ΄μ νλ³μμ λ³΄κ² μ΅λλ€. Ξ=(6βk)2β4(12β2k)=k2β4kβ12.\Delta=(6-k)^2-4(12-2k)=k^2-4k-12.Ξ=(6βk)2β4(12β2k)=k2β4kβ12. Ξ<0\Delta<0Ξ<0μ΄λ©΄ μ€κ·Όμ΄ μμΌλ―λ‘ νμ©λ©λλ€. Ξ<0β ββΊβ ββ2<k<6\Delta<0\iff -2<k<6Ξ<0βΊβ2<k<6 μ΄κ³ , μ μ kkkλ {β1,0,1,2,3,4,5}\{-1,0,1,2,3,4,5\}{β1,0,1,2,3,4,5}. κ²½κ³κ°μ μ κ²ν©λλ€. * k=6k=6k=6: g6(x)=x2g_6(x)=x^2g6β(x)=x2. λΆλͺ¨λ f(x)βx2f(x)\,x^2f(x)x2κ° λμ΄ x=0x=0x=0μμ λΆμ x2x^2x2μ μ νν μκ±°λκ³ , limβ‘xβ0x2f(x)x2=1f(0)=112\displaystyle \lim_{x\to 0}\frac{x^2}{f(x)x^2}=\frac1{f(0)}=\frac1{12}xβ0limβf(x)x2x2β=f(0)1β=121β. λ€λ₯Έ aβ 0a\neq 0aξ =0μμλ λΆλͺ¨ β 0\neq 0ξ =0. β νμ©. * k=β2k=-2k=β2: gβ2(x)=x2+8x+16=(x+4)2g_{-2}(x)=x^2+8x+16=(x+4)^2gβ2β(x)=x2+8x+16=(x+4)2. x=β4x=-4x=β4μμ λΆλͺ¨κ° 0μ΄μ§λ§ λΆμλ 16μ΄λ―λ‘ λ°μ°. β λΆν. λ°λΌμ 쑰건μ λ§μ‘±νλ μ μ kkkλ kβ{β1,0,1,2,3,4,5,6},k\in\{-1,0,1,2,3,4,5,6\},kβ{β1,0,1,2,3,4,5,6}, μ΄ 8κ°μ λλ€. μ λ΅: 8.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)