Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6897769e-4ee4-800f-aba5-69cca34f701c
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Write Fourier transform and focus on long wavelengths k→0k\to 0k→0. The connected 4-photon correlator at one fermion loop + two photon propagators yields, schematically, === ⟨AμAνAρAσ⟩conn(k) ∼ Πμνρσ(4)(k) ∼ e4m2 1k2 Tμνρσ+higher powers of k,\langle A_\mu A_\nu A_\rho A_\sigma\rangle_{\rm conn}(k) \;\sim\; \Pi^{(4)}_{\mu\nu\rho\sigma}(k) \;\sim\; \frac{e^4}{m^2}\,\frac{1}{k^2}\,T_{\mu\nu\rho\sigma} + \text{higher powers of }k,⟨AμAνAρAσ⟩conn(k)∼Πμνρσ(4)(k)∼m2e4k21Tμνρσ+higher powers of k, where TμνρσT_{\mu\nu\rho\sigma}Tμνρσ is a rank-4 tensor built from ηαβ\eta_{\alpha\beta}ηαβ and kαk_\alphakα. After the trace subtractions for hhh, you find Gμν,ρσ(k)≡⟨hμνhρσ⟩conn(k) ∝ κ~k2 Πμν,ρσ(spin-2)(k) + regular,\mathcal{G}_{\mu\nu,\rho\sigma}(k) \equiv \langle h_{\mu\nu} h_{\rho\sigma}\rangle_{\rm conn}(k) \;\propto\; \frac{\tilde{\kappa}}{k^2}\; \Pi^{(\text{spin-2})}_{\mu\nu,\rho\sigma}(k) \;+\; \text{regular},Gμν,ρσ(k)≡⟨hμνhρσ⟩conn(k)∝k2κ~Πμν,ρσ(spin-2)(k)+regular, with Π(spin-2)\Pi^{(\text{spin-2})}Π(spin-2) the spin-2 projector (transverse, traceless): Πμν,ρσ(spin-2)(k)=12(PμρPνσ+PμσPνρ)−13PμνPρσ,Pμν=ημν−kμkνk2.\Pi^{(\text{spin-2})}_{\mu\nu,\rho\sigma}(k) = \tfrac12\big( P_{\mu\rho}P_{\nu\sigma}+P_{\mu\sigma}P_{\nu\rho}\big) - \tfrac13 P_{\mu\nu}P_{\rho\sigma}, \qquad P_{\mu\nu}=\eta_{\mu\nu}-\frac{k_\mu k_\nu}{k^2}.Πμν,ρσ(spin-2)(k)=21(PμρPνσ+PμσPνρ)−31PμνPρσ,Pμν=ημν−k2kμkν. Thus, under appropriate conditions (coherent phase averaging, low kkk, dominance of the particular tensor structure), the composite propagator of hhh behaves like a massless spin-2 propagator ∝1/k2\propto 1/k^2∝1/k2 with projector Π(spin-2)\Pi^{(\text{spin-2})}Π(spin-2).
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)