Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
freem
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Openai/6941cb52-a9c8-8002-b0a9-66ac5c3b6011
(section)
Add languages
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====== 6. Metals Purification (Spin Chamber Focus) ====== * '''Physical Mechanism''': Induction heating (eddy currents, 2,700°F) melts metals; centrifugal spin (100-500 RPM, 0.5-5 G) stratifies by density (heavy metals outward, light slag inward); electro-migration (1-5 A/cm² DC) moves ions (e.g., copper to cathode, silicon to anode via quasi-electrolysis); Lorentz forces (0.5-2 T magnetic fields) stir/dampen flow for precision. Wire extrusion uses electromagnetic pinch (0.8-1.5 T coil) to stabilize stream. * '''Components''': * '''Induction Coils''': Copper windings ($200-$500, 2-5 kW) for melting. * '''Spin Chamber''': Rotating vessel (200-500 RPM, motor $500) with DC electrodes (graphite, $50-$100, anode ring/center, cathode die/wall). * '''Magnetic System''': Neodymium coils/magnets ($500-$1K, 0.5-2 T) for stirring/braking. * '''Extrusion Die''': Ceramic (alumina/zirconia, $200, conical with embedded coils) for wire pull (1-2 mm, 0.5-2 m/min). * '''Outer Shell''': Non-ferrous, non-conducting, high-temp material like alumina ceramic (Al2O3, melting point ~2,050°C, thermal conductivity <30 W/m·K, electrical resistivity >10^14 Ω·m) or zirconia (ZrO2, ~2,700°C, similar properties). These ceramics are ideal—non-reactive with molten metals, withstand 1,000-1,500°C operations, and insulate induction fields. Alternatives: Silicon nitride (Si3N4, ~1,900°C, non-wetting) or silicon carbide (SiC, ~2,700°C, but semi-conducting—avoid if full insulation needed). Shell thickness: 5-10 cm for structural integrity, with cooling channels (water, $200). * '''Ideas for Optimization''': Variable fields (pulsed 3-10 T) for targeted migration; integrate with asteroid extrusion (conical heads on probes). Boosts purity from 97-98% to 99.9-99.999% in one pass. * '''End Goal/Varied Applications''': Purify 20 tons/day (5-15 min/10 kg), extrude wire for welding/printing; Earth: High-quality brackets ($20-$50); asteroids: Iron-nickel wire for habitats. Ideologically, "purification" as refining waste's essence. * '''Time/Cost''': 5-15 min/batch; $2K-$3K module.
Summary:
Please note that all contributions to freem are considered to be released under the Creative Commons Attribution-ShareAlike 4.0 (see
Freem:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)